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Classification of functional brain images with
a spatio-temporal dissimilarity map
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Classification of subjects into predefined groups, such as patient vs.
control, based on their functional MRI data is a potentially useful
procedure for clinical diagnostic purposes. This paper presents an
automated method for classifying subjects into groups based on their
functional MRI data. The proposed methodology provides general
framework using preprocessed time series for the whole brain volume.
Using a training set of two groups of subjects, the new methodology
identifies spatio-temporal features that distinguish the groups and uses
these features to categorize new subjects. We demonstrate the method
using simulations and a clinical application that classifies individuals
into schizotypy and control groups.
© 2006 Elsevier Inc. All rights reserved.
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Introduction

Functional magnetic resonance imaging (fMRI) is a noninva-
sive neuroimaging technique used to study functional activity in
the living human brain. The task-evoked signal in fMRI is based on
the blood oxygen level dependence (BOLD) effect (Ogawa et al.,
1990). Neuronal activity is measured indirectly by recording
hemodynamic changes (Jueptner and Weiller, 1995). Data collected
on each subject are four-dimensional, with three spatial dimensions
measured over time.

This paper addresses the problem of classifying subjects into
groups using both temporal and spatial information in fMRI data,
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which has the potential to assist in early disease detection and
diagnosis. For example, mild cognitive impairment (MCI) is a
condition that predicts the onset of Alzheimer’s disease. It has been
shown via FDG-PET that MCI has a distinct functional signature
that is a more accurate predictor of the disease than neuropsycho-
logical tests (Chetelat et al., 2005). Another application, from
cognitive neuroscience research, is confirmation of hypothesized
group differences in BOLD response for distinct cognitive states.

Developing methods for classification of subjects based on
neuroimaging data poses significant challenges. Large data size
and small signal intensity change inhibit accurate classification.
Extracting robust features representative of both spatial and
temporal aspects of the data plays a crucial role in success of
classification.

There have been a number of efforts to classify subjects into
groups based on functional data. Some methods proceed from
activation maps generated by the general linear model. Kontos et
al. (2003) introduced an approach that uses space-filling curves for
mapping 3D space into a linear domain. Wang et al. (2004) used
dimension reduction techniques on the space-filling curves for
discriminative pattern discovery. Liow et al. (2000) applied linear
discriminant analysis on the principal components of PET data to
classify HIV-1 seropositive patients into AIDS dementia complex
(ADC) and non-ADC groups. Ford et al. (2003) used the same
approach for discriminating patients and controls based on fMRI
data for Alzheimer’s disease, schizophrenia, and mild traumatic
brain injury.

Some techniques focus their analysis on regions of interest
(ROI). Bogorodzki et al. (2005) developed a method based on
differences in regional brain activity. As part of feature selection
for preselected ROIs, mean time intensity curves for voxels
correlated with the stimulus are computed and modeled using a
mixture of time shifted Gaussian functions. New subjects are
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1 Permutation methods have been successfully applied to fMRI data by
Gamalo et al. (2005), Hayasaka and Nichols (2003), Nichols and Holmes
(2001), and Raz et al. (2003).
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classified based on derived feature vectors from multiple ROIs.
Pokrajac et al. (2005) introduced statistical distance and neural-
network-based methods for classification of brain image data
contingent on measures of dissimilarity between 3D probability
distributions of ROIs.

Mitchell et al. (2004) applied machine learning methods to
the classification of cognitive states based on fMRI data, a topic
closely related to classification of subjects. They investigated
several feature selection and classification approaches. Following
the same framework, Zhang et al. (2005) applied machine
learning techniques to classification of subjects based on
activation maps. In both applications, Gaussian Naive Bayes,
Support Vector Machines, and k nearest neighbor classifiers were
examined.

While these methods are promising, most rely on contrast
maps or predefined regions of interest and are not designed for
detecting subtle temporal differences. This paper examines the
feasibility of working directly with time series either from whole
brain volumes or regions of interest suggested by results from
previous studies to select voxels that exhibit highly discriminat-
ing features (based on a measure of temporal dissimilarity) and
assign group membership to new subjects.

Methods

For this work, functional data are assumed to be motion-
corrected, smoothed, and normalized to a standard anatomical
template.

We address the problem of classifying subjects by a general
methodology that takes two steps. The first is a feature selection
step that identifies patterns predictive of group differences by
localizing areas in space where temporal behavior is most
dissimilar between groups. The second step is classification,
where new subjects are assigned group membership based on
similarity at selected voxels to subjects with known group
membership.

As part of the feature selection step, we compare spatially
localized sets of time series between groups, using a permutation
test to identify voxels where groups exhibit temporal dissimilarity.
As an intermediate step we would like to quantify the degree of
similarity in the time series between two subjects for a selected
brain region. Each subject3s data for a specified region can be
represented in a voxel-by-time matrix. Hence, comparing two
subjects at a specified brain location can be accomplished by
comparing two matrices.

In the remainder of this section, the similarity measure and the
test statistic will be discussed in more detail. Once all the necessary
tools are developed, the feature selection algorithm is presented,
and classification is discussed.

Test statistic

It is important to define ‘similarity’ between two time series
data sets. The goal of the proposed feature selection algorithm is to
identify regions in the brain that best discriminate the groups,
regions where temporal patterns differ between groups during an
experimental task such as a cognitive challenge.

Typically, time series from different subjects are not directly
comparable due to variations in stimulus presentation order.
Therefore, subject and group differences are defined relative to
experimental tasks related to implementation and the cognitive
research question of interest. So here we follow suit and examine
task relative temporal responses by including a hemodynamic
response model in our test statistic.

A good similarity measure is sensitive enough to distinguish
between cases where two sets of time series data contain similar
signal patterns (related to the task) or similar noise patterns versus
cases where only one set of time series data contains noise and the
other contains signal. Problems could arise in cases where both sets
of time series are noise. From the perspective of our task, those
regions are similar, but the similarity measure could fail to identify
them as similar.

In general, we are interested in a distance function between two
voxel by time (n×T) matrices G and H, relative to an experimental
task, that is of the form

d ¼ Dist½ðG;WGÞ; ðH ;WH Þ�; ð1Þ
where the task waveform matricesWG andWH have a time series of
stimulus response timing for G and H, respectively, obtained by
convolving the event stimulus train with hemodynamic response
function in each voxel. Hence, rows of W are similar to the design
matrix in the general linear model with one explanatory variable
(for illustration, see top panel of Fig. 2).

For a spatial neighborhood of size n centered at any voxel, we
can compute pairwise d values for all combinations of subjects. For
illustration, consider two groups of subjects, groups A and B, with
two and three subjects, respectively. Each subject’s data are in the
form of an n×T matrix, where n is the number of voxels in the
localized region. We can construct a dissimilarity matrix D of all the
distances from Eq. (1) (Scheme 1). The group A by group B
quadrant of the D matrix dissimilarity values can be combined into
an observed test statistic dobs. For example, dobs could be the
average: dobs=dA1B1+dA1B2+dA1B3+dA2B1+dA2B2+dA2B3) / 6. An-
other possibility is to consider the median value. When the
observed test statistic value exceeds a predefined threshold, we
conclude that the temporal dynamics of the two localized brain
regions are dissimilar.
Significance testing and FDR

Statistical inference on the observed test statistic is performed
using a permutation test framework. The observed test statistic dobs
is computed from a subject-by-subject dissimilarity matrix D.
Large values of dobs indicate that the two groups are different
relative to the experimental paradigm. We would like to know if
the observed test statistic dobs is statistically significant. We can
construct a nonparametric test using the distribution of the test
statistic under the null hypothesis of no group difference in
temporal similarity (that is, subjects are randomly allocated
between the two groups) making weak distributional assumptions.
Under the null hypothesis, the distribution of dobs does not change
with random permutation of the D matrix (Fisher, 1935; Pitman,
1937; Hubert, 1987).1

The permutation distribution of the test statistic consists of all
possible permutations of subjects’ labels, found by simulta-
neously permuting rows and columns of the D matrix. Individual



Scheme 1. Illustration of a D matrix constructed for two groups of subjects. Images A1 and A2 belong to one group. Images B1, B2 and B3 belong to the second
group of subjects.
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d values do not need to be recalculated as we are simply
reordering rows and columns of the D matrix. The significance
of the observed test statistic can be computed considering the
proportion of times that a value as high or higher than dobs is
obtained.

The number of possible permutations can be quite large, and
listing all possible permutations can be computationally costly. As
an alternative, an approximate test can be made by drawing a
random sample from the space of all possible permutations, with as
few as 1000 permutations drawn (Wasserman and Böckenholt,
1989; Nichols and Holmes, 2001).

At each voxel, a test statistic and corresponding p value are
computed. Empirically obtained p values are then thresholded
through comparison to a predetermined α using a false discovery
rate to account for the multiple comparisons problem (Benjamini
and Hochberg, 1995; Genovese et al., 2002).

Weighting scheme

To get spatial sensitivity, increased stability, and power of the
classification procedure, a test statistic can be computed over a
small localized neighborhood. Both the central voxel and its
neighbors are used to compute smooth spatio-temporal dissim-
ilarity map voxel values (Fig. 1).

Within a neighborhood, n voxels can be weighted differently in
the computation of the dissimilarity value. A Gaussian weighting
scheme gives more weight to the central voxel and less weight to
the neighboring voxels. The farther away the neighbors are from
the center, the smaller the weight assigned. A Gaussian pattern of
weights is characterized by its standard deviation, expressed in
terms of voxel dimension. In a two-dimensional case:

Xr x; yð Þ ¼ 1
2pr2

exp � x2 þ y2

2r2

� �
; ð2Þ

where standard deviation σ determines the amount of smoothing.
There are two main reasons to include neighbors in the

computation of a voxel-based dissimilarity measure. The first
reason is to average out high spatial frequency noise in the data.
Areas of group difference with greater spatial extent will be kept,
and those with small spatial extent eliminated. The second reason
is to address variations in anatomy among subjects. Data across
subjects are aggregated; due to variation in anatomy, functional
activations may not overlap exactly.

Similarity measure and the RV-coefficient

The general framework of the proposed method requires a
selection of dissimilarity measure. We adapt the RV-coefficient,
first introduced by Robert and Escoufier (1976), for comparison of
time series data at a specified spatial region between two subjects.
The RV-coefficient has been previously applied to fMRI data for
subject selection by Kherif et al. (2003).

The RV-coefficient is an ideal measure of temporal similarity
between signals because it is a multivariate extension of the
Pearson correlation coefficient and indicates the overall similarity
of two matrices.

Let matrices Gp�T and Hq�T define two configurations of
points CðGÞ and CðHÞ inRp andRq respectively, where p and q are
the number of voxels, and T is the number of time points. Define G
and H to be two mean centered matrices of the original data, such
that every time series is mean centered and the (i, j)th element of G
is (gij−g¯j). Without loss of generality, let p=q=n, where n is a
subset of image voxels. This subset can be as small as a single
voxel, for a voxel-by-voxel comparison of two time series. The
RV-coefficient measures the closeness of these two configurations
(Robert and Escoufier, 1976):

RV G;Hð Þ¼ trðG VGH VHÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðG VGG VGÞtrðH VHH VHÞp ¼ trðGH VHG VÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

trðGG VÞ2trðHH VÞ2
q :

ð3Þ

The scalar product between G′G and H′H represents a
generalized covariance between G and H. Denote the scalar
product tr(G′GH′H) by <G′G,H′H>. Greater values of <G′G,H′H>,
relative to <G′G,G′G> and <H′H,H′H>, indicate more similarity
between G′G and H′H in terms of raw product distances. Thus,
larger RV-coefficient values indicate higher similarity (high degree



Fig. 1. Smooth spatio-temporal dissimilarity map construction is illustrated with 2D data. A mask (3×3 in this illustration) is applied at each pixel. Based on the
time series data selected by the mask, the dissimilarity value is recorded at the location of the central pixel in the output array.
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of co-structure) between configurations. Reexpressing the matrix
formulation of the RV-coefficient, we derive:

RV G;Hð Þ ¼

Xn
j¼1

Xn
i¼1

XT
t¼1

githjt

 !2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
j¼1

Xn
i¼1

XT
t¼1

gitgjt

 !2Xn
j¼1

Xn
i¼1

XT
t¼1

hithjt

 !2
vuut

:

ð4Þ
which is a normalized cross-covariance measure. Note that the
numerator gives a measure of temporal similarity between all pairs
of time series at {gi} and {hi}. The RV-coefficient is defined on
[0,1].

One distance function between G and H relative to an
experimental task is an absolute difference between the RV-
coefficient of G with WG and the RV-coefficient of H with WH:

d ¼ jRVðG;WGÞ � RVðH ;WH Þj: ð5Þ
The reasoning behind considering the absolute difference of

two RV-coefficients is that the RV-coefficient between the stimuli
and neuronal activity is expected to be high in activated areas and
low in areas with no activation. Therefore, the absolute difference
of the two RV-coefficients will be low for regions where activation
is present in both time series data sets or where both time series
data sets contain noise. Regions where one time series data set
contain signal and another time series data set contain noise will
have a high absolute difference of the RV-coefficients. In addition,
d allows us to compare subjects with different stimulus presenta-
tion sequence.

There are similarities between the proposed approach and the
general linear model when dissimilarity measure is based on RV-
coefficient. Following the above approach, the comparison
between subjects is made on a localized region which consists
of a set of voxels. For a special case where the localized region
consists of a single voxel, d in Eq. (5) is equivalent to the general
linear model. However, d does not make any distributional
assumptions about the data, although we do make an assumption
of exchangeability for permuting subject3s labels at the threshold-
ing step. The general framework allows the user to specify a
dissimilarity measure of choice. The method based on RV-
coefficient dissimilarity measure is expected to be spatially
sensitive and powerful because it extracts common information
from neighboring voxels and uses the common information for
classification.
Feature selection algorithm

The goal of feature selection is to identify areas where groups
differ relative to stimulus presentation. The algorithm searches for
areas that are most dissimilar between the two groups with respect
to time series data, according to the criterion defined in Eq. (1). Data
from group A are labeled A1, …, AnA, and data from group B are
labeled B1, …, BnB. The feature selection algorithm, based on a
smooth spatio-temporal dissimilarity map, proceeds as follows:

1. For each voxel (x0, y0, z0), construct the D matrix and compute
the observed test statistic. For example:

dðx0; y0; z0Þobs ¼
1

nAnB

XnA
i¼1

XnB
j¼1

���RVX Ai;WAið Þ � RVX Bj;WBj

� ����;
ð6Þ

where Ω represents a weighted combination of the voxel and its
neighbors that are used in the computation. The map of observed
test statistics is referred to as a smooth spatio-temporal
dissimilarity map.

2. The value of d(x0, y0, z0)obs is compared to the distribution of d
(x0, y0, z0) under the null hypothesis of no group differences in
temporal similarity, and permutation-based p values for each
voxel of the spatio-temporal dissimilarity map are computed.

3. Threshold the map of p values from step 2 using a false
discovery rate method.
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The output of the algorithm is a reduced data set of nr spatial
locations from voxels where the difference between the two groups
is significant. To classify future subjects, we use only the time
series from the training data associated with these nr voxel
locations selected by the feature extraction step.

This method is easily extended to more than two groups.
Suppose that our data consist of subjects from G groups and the
images in group g are labeled A1

g,…, Ang
g , g=1,…G. Let (g1, g2) be

a pair of groups. For each of the pairings of two groups chosen
from the G groups, we compute

dðx0; y0; z0Þg1;g2 ¼
1

ng1 ; ng2

Xng1
i1

Xng2
i2

jRV Ag1
i1 ;WA

g1
i1

� 	
� RV Ag2

i2 ;WA
g2
i2

� 	
j:

Finally, for each voxel, we simply add the computed distances
for each pair

d ̂ðx0; y0; z0Þ ¼
XG�1

g1¼1

XG
g2¼g1þ1

dðx0; y0; z0Þg1;g2

Classification

With certain areas identified in the feature selection step, we are
now ready to classify. For consistency, we will use the same
similarity measure from the feature selection step. Let E be a new
data set that is to be classified into one of the two previously
defined groups, A or B. Let Ā and B¯ be the average time series
data of groups A and B, respectively. A subset of the new subject3s
time series data E is compared to subsets of Ā and B¯ identified in
the feature selection step. The same similarity measure used in the
dimension reduction stage is computed between selected subsets
for E and Ā, and E and B¯. The new subject E is classified into
group A if RV(E, Ā)≥RV(E, B¯). Otherwise, E is classified into
group B.

In the general case of G groups, a new subject E is assigned to
group g* where

g* ¼ argmaxg¼1; N ;GjRVðE; ĀgÞj:

Comparing voxels-by-time matrices is only meaningful for
cases where all subjects were presented with the same stimuli. In
other cases, where stimulus presentation is randomized, a new
subject E is assigned to group g* where

g* ¼ argming¼1; N ;G

Xng
i¼1

jRVðAg
i ;W

g
i Þ � RVðE;WEÞj:

It is important to consider that classification accuracy could be
limited by potential noise and artifact sources in the data. A
classifier could pick out such artifacts as important features to be
used in classification. The data quality must be assessed prior to
use in this analysis, using a procedure similar to that described by
Stöcker et al. (2005).

Results

Simulated data

Feature selection based on smooth spatio-temporal dis-
similarity maps and classification performance were evaluated
on simulated data. To ensure a simulation with realistic
noise, a task waveform was superimposed on actual fMRI
scans of a single subject taken during a rest condition. All
computations were performed using Matlab 7.0 (http://www.
mathworks.com).

The data were acquired on a 3 T Siemens Allegra scanner in
accordance with the Institutional Review Board at the University
of Illinois at Urbana-Champaign. A single-shot EPI sequence was
used with a TE/TR of 25/2000 ms, 32 slices, FOV of 22 cm,
matrix size of 64×64, and 150 acquisitions per run. Ten of these
runs were acquired with the subject in a resting state. Each run in
the simulation was considered as if it were obtained from a
different subject. The data were realigned and motion-corrected
using SPM99 (http://www.fil.ion.ucl.ac.uk/spm). For evaluation
purposes, only a 2D simulation was performed. Thus, only a
single slice of the realigned data sets was extracted. A task
waveform for an event-related design was generated using the
optseq2 program (http://surfer.nmr.mgh.harvard.edu/optseq/; Dale,
1999; Dale et al., 1999). The amplitude of the stimulus
waveforms was scaled to be 5% of the mean of the brain region
to which it was added. The task waveform was added to an ROI
of 24 pixels in the images that form group B. Images that form
group A had no signal added. For illustrative purposes, Fig. 2
shows extracted time series from a voxel outside the ROI and
from a voxel within the ROI from representative images in groups
A and B. Notice that visually determining which time series has a
signal added is a challenging task. Next, images in groups A and
B were smoothed by a Gaussian filter with a full-width at half
maximum (FWHM) of 2 voxels. Finally, each pixel’s mean time
course was subtracted.

To examine the effect of neighborhood size smooth spatio-
temporal dissimilarity, maps were constructed for Gaussian
weights defined on 3×3 and 5×5 neighborhoods. Only voxels
inside the brain volume were used in the computation. The D
matrix was permuted 1000 times, and smooth spatio-temporal
dissimilarity maps were thresholded using a 5% false
discovery rate. The upper panel of Fig. 3 shows smooth
spatio-temporal dissimilarity maps constructed with 3×3 and
5×5 Gaussian weights. The lower panel shows EPI data with
superimposed thresholded p values. In both cases, the area
with an added signal was correctly identified. There is a
tradeoff between the signal and spatial resolution. The optimal
filter width would match the spatial extent of the activation
area.

In the next simulation, classification performance was evaluated
using cross-validation technique as a function of percent change of
baseline for different values of false discovery rate q. We would
expect classification accuracy to increase monotonically with
percent change of baseline.

For each value of percent signal change and false discovery
rate q, one subject’s time series data were left out for testing
purposes. Based on the remaining subjects’ data, regions with
highest dissimilarity were identified using feature selection based
on the spatio-temporal dissimilarity map, with 1000 permuta-
tions of the D matrix. The left-out subject was then classified
into one of the two groups. The procedure was repeated 10
times, based on the number of available data sets, and
classification rate was determined and recorded for each of the
two groups.

The results of the simulation study examining classification
accuracy as a function of percent change of baseline for different

http://www.mathworks.com
http://www.mathworks.com
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http://surfer.nmr.mgh.harvard.edu/optseq/


Fig. 2. Task waveform for an event-related design (top); sample time series from a pixel (20, 20) outside the ROI (middle) and a pixel (46, 35) inside the ROI
(bottom) from representative images in groups A (no task waveform added) and B (task waveform added). Time series are mean centered.

68 S.V. Shinkareva / NeuroImage 33 (2006) 63–71
values of q are shown in Fig. 4. As expected, classification rate
monotonically increases with increase in percent baseline change.
Classification accuracy for group B reaches 100% for 2% baseline
Fig. 3. The upper panel shows smooth spatio-temporal dissimilarity maps constru
indicates the magnitude of the dissimilarity values. The lower panel shows locations
with FDR.
change. Stringent choices of q result in more false classifications
(type II error) since fewer regions are selected, even when true
differences exist, giving a higher sensitivity to noise. When q is
cted with panel A 3×3 and panel B 5×5 Gaussian filters. The color scale
of significant group differences based on 1000 permutations and thresholded



Fig. 4. Cross-validation results for realistic fMRI noise data. Classification accuracy for different values of percent signal change and false discovery rate is based
on spatio-temporal dissimilarity map feature selection constructed with a 3×3 Gaussian filter and 1000 permutations of the D matrix.

Fig. 5. Voxels selected based on spatio-temporal dissimilarity map feature
selection for a representative subject. Voxels selected are in left middle
frontal gyrus and left superior frontal gyrus.
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large, more regions are selected, including those that are similar
(type I error).

In vivo

Data description
We illustrate the methodology on a subset of individuals from a

study reported by Mohanty et al. (2005) consisting of 16 subjects
with high scores on a positive schizotypy behavioral measure and 16
low scoring controls (Chapman et al., 1978; Eckblad and Chapman,
1983). Subjects performed an emotional Stroop task which involves
the simultaneous presentation of task-relevant (color of letters) and
task-irrelevant (emotional meaning) attributes. The task is to
identify the ink color of a word as quickly as possible while
ignoring the word’s meaning. Performance depends on selective
attention to task-relevant vs. task-irrelevant stimulus features and
maintenance of contextual information (e.g., Cohen and Servan-
Schreiber, 1992). Each participant performed a block-design
emotional Stroop task consisting of blocks of positive or negative
emotion words alternating with blocks of neutral words, while 445
echo-planar (EPI) images (TR 1517 ms, echo time TE 40 ms, flip
angle 90°, 15 contiguous slices 7 mm thick, no gap, in-plane
resolution=3.75 mm2) were acquired in a 1.5 T GE Signa scanner,
in accordance with the institutional review board at the University of
Illinois. High-resolution three-dimensional (3D) anatomical images
(T1-weighted 3D gradient echo images) of the whole brain were
collected for each participant for landmark selection. T1-weighted
anatomical images of the 15 functional acquisition slices were also
collected for image registration purposes.
Previous findings
Mohanty et al. (2005) investigated the hypothesis that,

while performing the emotional Stroop task, positive-schizoty-
py individuals would show abnormal activation in regions
involved in emotional processing as well as maintenance of
attentional set in the presence of emotional distractors. Among
the cortical regions, the schizotypy group showed greater
activation in the right middle frontal gyrus (Brodmann area 9),
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right inferior frontal gyrus (Brodmann area 46), rostral anterior
cingulate gyrus (BA 32), and left superior and inferior parietal
lobe for negative than for neutral words. For the same contrast, the
control group showed greater activation in the left middle frontal
gyrus, left superior frontal gyrus, right inferior temporal gyrus, and
right middle occipital gyrus. Since the dorsolateral prefrontal
cortex (DLPFC) plays a critical role in maintenance of attentional
set in the presence of emotional and non-emotional distractors
(Compton et al., 2003), the decreased left DLPFC activity (i.e.,
middle frontal gyrus, BA 9) in schizotypy participants is
consistent with the hypothesis that these individuals have deficits
in the ability to maintain attentional set in the presence of aversive
distractors.

Classification results
Participants were classified as high schizotypes or controls

based on functional data, and the classification was compared to
the behavioral test classification. Fourteen participants with the
same order of stimulus presentation – seven in each group – were
included in the analysis. Schizophrenia spectrum individuals
exhibit problems in maintaining context or attentional set and
monitoring for the occurrence of conflict within the attentional
network (Braver et al., 1999; van Veen and Carter, 2002; Mohanty
et al., 2005). These functions are implemented in frontal brain
areas including DLPFC and anterior cingulate cortex (ACC)
(Milham et al., 2001; MacDonald et al., 2000). Hence, most
differences between schizotypes and controls for emotional Stroop
task are expected to occur in frontal areas. For this reason and for
computational considerations, we classified participants into
schizotypes and controls based on functional activity in frontal
areas.

Classification accuracy was evaluated by the leave-one-out
method. For each subject that was excluded from the analysis,
smooth spatio-temporal dissimilarity and p value maps were
computed based on the remaining subjects (i.e., training data).
Maps of p values were thresholded using 5% FDR. Identified
features (voxels) were used for classification of the left-out subject.
From the training data, average voxel-by-time matrices were
computed for each of the two groups based on the selected
features. The voxel-by-time matrix for the new subject was
compared to group mean matrices using the RV-coefficient, and the
subject was classified into the group with the larger RV-coefficient.
The procedure was repeated for all subjects. Average classification
accuracy was 85.71%, 6/7 for each group. Two frontal areas,
DLPFC and ACC emerged as important in the classification
process. Selected voxels for a representative subject are shown in
Fig. 5.

Discussion
There is considerable literature indicating that schizophrenia

spectrum individuals show problems in processing of context
including deficits in maintenance of attentional set and
monitoring of conflict in the attentional network (e.g., Braver
et al., 1999). This impairment is attributed to abnormal activity
in DLPFC and ACC (Barch et al., 2001; MacDonald et al.,
2003; Mohanty et al., 2005). Results from the present study
confirm that there are functional differences between schizo-
typy individuals and controls in the DLPFC and ACC.
Selected areas where the temporal dissimilarity is large between
the two groups are similar to those identified in Mohanty et al.
(2005).
Conclusion

This paper presented a unified feature selection and classifica-
tion procedure for classifying subjects into groups based on four
dimensional spatio-temporal data. Unlike previous approaches, the
present approach offers the ability to locate spatial regions with
temporal differences between groups. The proposed method
simultaneously accounts for and identifies intergroup spatial and
temporal variability. It uses temporal similarity as a spatially
localized measure of similarity, and it incorporates a permutation
framework for significance testing.

To our knowledge, this is the first nonparametric feature
selection and classification method that uses, simultaneously,
localized spatial and temporal information of fMRI based on the
whole brain volume. The proposed methodology shares simila-
rities with a general linear model approach, but it departs from
the traditional application by not making distributional assump-
tions, hence we expect this to be robust and to perform well
under very general conditions. The methodology allows the user
to specify a dissimilarity measure. Moreover, it can be easily
adapted so that other classification methods can be incorporated
into the methodology.

The simulation studies show that the proposed method is able to
accurately identify regions of dissimilarity and gives low
misclassification rates. Finally, an analysis of an in vivo data set
demonstrates that the method gives results that are consistent with
previous findings and provides the first demonstration of
classification of schizotypes and controls based on their hemody-
namic time series data.
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