
Homework 2 - Solutions

MAT 200, Instructor: Alena Erchenko

1. By the definition of the absolute value, we have |a| ≥ 0 and |b| ≥ 0. Also, for real numbers a
and b, a · 0 = b · 0 = 0. Thus, using the multiplication and transitive laws and Exercise 6 in
Homework 1, we obtain |a| ≤ |b| ⇒ (|a|2 ≤ |a||b| and |a||b| ≤ |b|2) ⇒ |a|2 ≤ |b|2 ⇒ a2 ≤ b2.
Hence, |a| ≤ |b| ⇒ a2 ≤ b2.

2. (a) For all rational numbers q there exists a positive real number x such that q
x
≥ 0.

(b) x ≤ 0 and x
2

is not a natural number.

(c) There exists an integer number y such that for all rational numbers s, y−s ≤ 0 or ys 6= 43.

3. Notice that (a−b)2+(a−c)2+(b−c)2 = 2a2+2b2+2c2−2ab−2ac−2bc = 2(a2+b2+c2−ab−ac−bc).
Since a − b, a − c, and b − c are real numbers, (a − b)2 ≥ 0, (a − c)2 ≥ 0, and (b − c)2 ≥ 0.
Then, (a− b)2 + (a− c)2 + (b− c)2 ≥ 0 what implies 2(a2 + b2 + c2 − ab− ac− bc) ≥ 0. Thus,
by the multiplication law, a2 + b2 + c2 − ab − ac − bc ≥ 0. Therefore, by the addition law,
a2 + b2 + c2 ≥ bc + ac + ab.

4. Let x be even and y be odd. Suppose, for contradiction, that x + y is even. Since x is even,
x = 2k for some integer k. Since x + y is even, x + y = 2m for some integer m. Then,
y = (x+ y)−x = 2m− 2k = 2(m− k) where m− k is an integer. Thus, y is even contradicting
the fact that y is odd, i.e., not even. Hence, if x is even and y is odd then x + y is odd.

5. We have x2− y2 = (x− y)(x+ y). Suppose, for contradiction, that there exist natural numbers
x, y such that (x−y)(x+y) = 1. Since x, y are natural numbers, we have that x+y ≥ 2, (x−y)
is an integer, and x− y = 1

x+y
> 0. In particular, x− y ≥ 1 because (x− y) is an integer and

x−y > 0. Since x−y ≥ 1 and x+y ≥ 2, we have (x−y)(x+y) ≥ 2 contradicting the fact that
(x− y)(x + y) = 1. Therefore, there are no natural numbers x, y such that (x− y)(x + y) = 1.

6. We will use a proof by cases.

Let a, b be real numbers. Using the trichotomy law, we consider three cases: both a and b are
non-negative, both a and b are negative, and one of a and b is negative.

(a) Assume a ≥ 0 and b ≥ 0. Then, |a + b| = a + b = |a| + |b|. Therefore, |a + b| = |a| + |b|.
In particular, |a + b| ≤ |a|+ |b|.

(b) Assume a ≤ 0 and b ≤ 0. Then, a+b ≤ 0. We have |a+b| = −(a+b) = −a+(−b) = |a|+|b|.
Therefore, |a + b| = |a|+ |b|. In particular, |a + b| ≤ |a|+ |b|.

(c) We now assume that one of a and b is negative. By the commutativity of operation +, we
know that a + b = b + a and |a|+ |b| = |b|+ |a|. Therefore, it does not matter which one
is negative and which one is positive.



Assume a ≥ 0 and b < 0. Then, |a| = a and |b| = −b, in particular, b = −|b|. Then,
|a + b| = ||a| − |b||, so |a + b| = |a| − |b| if |a| ≥ |b| and |a + b| = −|a| + |b| if |a| ≤ |b|.
Since |a| ≥ 0 and |b| ≥ 0, we have −|a| ≤ |a| and −|b| ≤ |b|. Thus, |a| − |b| ≤ |a|+ |b| and
−|a|+ |b| ≤ |a|+ |b|. Therefore, |a + b| ≤ |a|+ |b|.


