Homework 2 - Solutions

MAT 200, Instructor: Alena Erchenko

1. By the definition of the absolute value, we have $|a| \geq 0$ and $|b| \geq 0$. Also, for real numbers a and $b, a \cdot 0=b \cdot 0=0$. Thus, using the multiplication and transitive laws and Exercise 6 in Homework 1, we obtain $|a| \leq|b| \Rightarrow\left(|a|^{2} \leq|a||b|\right.$ and $\left.|a||b| \leq|b|^{2}\right) \Rightarrow|a|^{2} \leq|b|^{2} \Rightarrow a^{2} \leq b^{2}$. Hence, $|a| \leq|b| \Rightarrow a^{2} \leq b^{2}$.
2. (a) For all rational numbers q there exists a positive real number x such that $\frac{q}{x} \geq 0$.
(b) $x \leq 0$ and $\frac{x}{2}$ is not a natural number.
(c) There exists an integer number y such that for all rational numbers $s, y-s \leq 0$ or $y s \neq 43$.
3. Notice that $(a-b)^{2}+(a-c)^{2}+(b-c)^{2}=2 a^{2}+2 b^{2}+2 c^{2}-2 a b-2 a c-2 b c=2\left(a^{2}+b^{2}+c^{2}-a b-a c-b c\right)$. Since $a-b, a-c$, and $b-c$ are real numbers, $(a-b)^{2} \geq 0,(a-c)^{2} \geq 0$, and $(b-c)^{2} \geq 0$. Then, $(a-b)^{2}+(a-c)^{2}+(b-c)^{2} \geq 0$ what implies $2\left(a^{2}+b^{2}+c^{2}-a b-a c-b c\right) \geq 0$. Thus, by the multiplication law, $a^{2}+b^{2}+c^{2}-a b-a c-b c \geq 0$. Therefore, by the addition law, $a^{2}+b^{2}+c^{2} \geq b c+a c+a b$.
4. Let x be even and y be odd. Suppose, for contradiction, that $x+y$ is even. Since x is even, $x=2 k$ for some integer k. Since $x+y$ is even, $x+y=2 m$ for some integer m. Then, $y=(x+y)-x=2 m-2 k=2(m-k)$ where $m-k$ is an integer. Thus, y is even contradicting the fact that y is odd, i.e., not even. Hence, if x is even and y is odd then $x+y$ is odd.
5. We have $x^{2}-y^{2}=(x-y)(x+y)$. Suppose, for contradiction, that there exist natural numbers x, y such that $(x-y)(x+y)=1$. Since x, y are natural numbers, we have that $x+y \geq 2,(x-y)$ is an integer, and $x-y=\frac{1}{x+y}>0$. In particular, $x-y \geq 1$ because $(x-y)$ is an integer and $x-y>0$. Since $x-y \geq 1$ and $x+y \geq 2$, we have $(x-y)(x+y) \geq 2$ contradicting the fact that $(x-y)(x+y)=1$. Therefore, there are no natural numbers x, y such that $(x-y)(x+y)=1$.
6. We will use a proof by cases.

Let a, b be real numbers. Using the trichotomy law, we consider three cases: both a and b are non-negative, both a and b are negative, and one of a and b is negative.
(a) Assume $a \geq 0$ and $b \geq 0$. Then, $|a+b|=a+b=|a|+|b|$. Therefore, $|a+b|=|a|+|b|$. In particular, $|a+b| \leq|a|+|b|$.
(b) Assume $a \leq 0$ and $b \leq 0$. Then, $a+b \leq 0$. We have $|a+b|=-(a+b)=-a+(-b)=|a|+|b|$. Therefore, $|a+b|=|a|+|b|$. In particular, $|a+b| \leq|a|+|b|$.
(c) We now assume that one of a and b is negative. By the commutativity of operation + , we know that $a+b=b+a$ and $|a|+|b|=|b|+|a|$. Therefore, it does not matter which one is negative and which one is positive.

Assume $a \geq 0$ and $b<0$. Then, $|a|=a$ and $|b|=-b$, in particular, $b=-|b|$. Then, $|a+b|=||a|-|b||$, so $|a+b|=|a|-|b|$ if $|a| \geq|b|$ and $|a+b|=-|a|+|b|$ if $|a| \leq|b|$. Since $|a| \geq 0$ and $|b| \geq 0$, we have $-|a| \leq|a|$ and $-|b| \leq|b|$. Thus, $|a|-|b| \leq|a|+|b|$ and $-|a|+|b| \leq|a|+|b|$. Therefore, $|a+b| \leq|a|+|b|$.

