Homework 3-Solutions

MAT 200, Instructor: Alena Erchenko

1. Proof. Let x be an even integer. Then, $x=2 q$ for some integer q. Suppose, for the contradiction, that $x^{3}-1$ is an even integer. Then, $x^{3}-1=2 k$ for some integer k. Since $x=2 q$ and $x^{3}-1=2 k$, we have $(2 q)^{3}-1=2 k$, i.e., $8 q^{3}-1=2 k$. Thus, $1=8 q^{3}-2 k=2\left(4 q^{3}-k\right)$ where $4 q^{3}-k$ is an integer. In particular, $4 q^{3}-k=\frac{1}{2}$ what implies that $\frac{1}{2}$ is an integer contradicting the fact that $\frac{1}{2}$ is not an integer. Hence, $x^{3}-1$ is not even, so $x^{3}-1$ is odd.
2. Proof. The contrapositive of the statement "If a is even and b is odd, then $a+b$ is odd" is "If $a+b$ is even, then a is odd or b is even". Since the statement and its contrapositive are equivalent, it is enough to suppose $a+b$ is even and show that a is odd or b is even.

If a is odd, then we are done. Thus, we assume that a is not odd, i.e., a is even. Since $a+b$ and a even, we have $a+b=2 k$ and $a=2 l$ for some integers k and l. Then, $b=(a+b)-a=$ $2 k-2 l=2(k-l)$ where $(k-l)$ is an integer. Thus, b is even. As a result, if $a+b$ is even, then a is odd or b is even.
3. The mistake in the inductive step. The proof does not work to show that for each collection of 2 horses, all of the horses in the collection have the same color. If we remove a horse from a collection of 2 horses, then we get a collection of 1 horse, which obviously, has the same color. The problem is that the collections of 1 horse do not when we choose another horse. Therefore, we could have 2 horses such that one is of one color, and the other is of the other. Therefore, statement for 1 horse doesn't imply statement for 2 horses, so the inductive step doesn't hold.
4. Proof. We prove by induction.

Base case: For $n=1$, we have $1^{2}+\ldots+n^{2}$ is just 1 and $\frac{n(n+1)(2 n+1)}{6}=\frac{1(1+1)(2 \cdot 1)}{6}=\frac{1 \cdot 2 \cdot 3}{6}=1$.
Therefore, for $n=1$, we have $1^{2}+2^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$.
Inductive step: Suppose that for given $n \in \mathbb{N}$, we have

$$
1^{2}+2^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

Our goal is to show that

$$
1^{2}+2^{2}+\ldots+n^{2}+(n+1)^{2}=\frac{[n+1]([n+1]+1)(2[n+1]+1)}{6}
$$

i.e.,

$$
1^{2}+2^{2}+\ldots+n^{2}+(n+1)^{2}=\frac{(n+1)(n+2)(2 n+3)}{6} .
$$

Adding $(n+1)^{2}$ to both sides of the inductive hypothesis, we get

$$
\begin{aligned}
1^{2}+2^{2}+\ldots+n^{2}+(n+1)^{2} & =\frac{n(n+1)(2 n+1)}{6}+(n+1)^{2} \\
& =\frac{n(n+1)(2 n+1)}{6}+\frac{6(n+1)(n+1)}{6} \\
& =\frac{(n+1)}{6}(n(2 n+1)+6(n+1)) \\
& =\frac{(n+1)}{6}\left(2 n^{2}+7 n+6\right) \\
& =\frac{(n+1)(n+2)(2 n+3)}{6}
\end{aligned}
$$

because

$$
(n+2)(2 n+3)=2 n^{2}+4 n+3 n+6=2 n^{2}+7 n+6 .
$$

Therefore, by the principle of mathematical induction, we proved that for each $n \in \mathbb{N}$,

$$
1^{2}+2^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

5. Proof. We prove by induction.

Base case: For $n=1$, we have $1+x+x^{2}+\ldots+x^{n}=1+x$ and

$$
\frac{x^{n+1}-1}{x-1}=\frac{x^{2}-1}{x-1}=\frac{(x-1)(x+1)}{x-1}=x+1
$$

because $x-1 \neq 0$. Therefore, for $n=1$, the statement is true.
Inductive step: Suppose that for given $n \in \mathbb{N}$, we have

$$
1+x+x^{2}+\ldots+x^{n}=\frac{x^{n+1}-1}{x-1}
$$

Our goal is to show that

$$
1+x+x^{2}+\ldots+x^{n}+x^{n+1}=\frac{x^{[n+1]+1}-1}{x-1}
$$

i.e.,

$$
1+x+x^{2}+\ldots+x^{n}+x^{n+1}=\frac{x^{n+2}-1}{x-1}
$$

Adding x^{n+1} to both sides of the inductive hypothesis, we get

$$
\begin{aligned}
1+x+x^{2}+\ldots+x^{n}+x^{n+1} & =\frac{x^{n+1}-1}{x-1}+x^{n+1} \\
& =\frac{x^{n+1}-1}{x-1}+\frac{x^{n+1}(x-1)}{x-1} \\
& =\frac{x^{n+1}-1}{x-1}+\frac{x^{n+2}-x^{n+1}}{x-1} \\
& =\frac{x^{n+1}-1+x^{n+2}-x^{n+1}}{x-1} \\
& =\frac{x^{n+2}-1}{x-1} .
\end{aligned}
$$

Therefore, by the principle of mathematical induction, we proved the statement for every $n \in \mathbb{N}$.
6. Proof. We use proof by induction.

Base case: Let $n=1$. Then, $3^{2 n-1}+1=3^{2 \cdot 1-1}+1=4$ and 4 divides 4 . Therefore, 4 divides $\left(3^{2 n-1}+1\right)$ if $n=1$.
Inductive step: Suppose that for given $n \in \mathbb{N}$, we have 4 divides $\left(3^{2 n-1}+1\right)$. Our goal is to show that 4 divides $\left(3^{2[n+1]-1}+1\right)$, i.e., 4 divides $\left(3^{2 n+1}+1\right)$.

We have

$$
3^{2 n+1}+1=3^{2 n-1} \cdot 3^{2}+1=3^{2 n-1} \cdot(8+1)+1=\left(3^{2 n-1}+1\right)+8 \cdot 3^{2 n-1} .
$$

Since 4 divides $\left(3^{2 n-1}+1\right)$ (by inductive hypothesis) and 4 divides $8 \cdot 3^{2 n-1}$ (because $8 \cdot 3^{2 n-1}=$ $4 \cdot\left(2 \cdot 3^{2 n-1}\right)=4 \cdot$ integer $)$, we have 4 divides $\left(3^{2 n+1}+1\right)$.
Therefore, by the principle of the mathematical induction, we proved the statement for every $n \in \mathbb{N}$.

