
Homework 3 - Solutions

MAT 200, Instructor: Alena Erchenko

1. Proof. Let x be an even integer. Then, x = 2q for some integer q. Suppose, for the contradic-
tion, that x3 − 1 is an even integer. Then, x3 − 1 = 2k for some integer k. Since x = 2q and
x3− 1 = 2k, we have (2q)3− 1 = 2k, i.e., 8q3− 1 = 2k. Thus, 1 = 8q3− 2k = 2(4q3− k) where
4q3− k is an integer. In particular, 4q3− k = 1

2
what implies that 1

2
is an integer contradicting

the fact that 1
2
is not an integer. Hence, x3 − 1 is not even, so x3 − 1 is odd.

2. Proof. The contrapositive of the statement “If a is even and b is odd, then a + b is odd” is
“If a + b is even, then a is odd or b is even”. Since the statement and its contrapositive are
equivalent, it is enough to suppose a+ b is even and show that a is odd or b is even.

If a is odd, then we are done. Thus, we assume that a is not odd, i.e., a is even. Since a + b
and a even, we have a+ b = 2k and a = 2l for some integers k and l. Then, b = (a+ b)− a =
2k− 2l = 2(k− l) where (k− l) is an integer. Thus, b is even. As a result, if a+ b is even, then
a is odd or b is even.

3. The mistake in the inductive step. The proof does not work to show that for each collection
of 2 horses, all of the horses in the collection have the same color. If we remove a horse from a
collection of 2 horses, then we get a collection of 1 horse, which obviously, has the same color.
The problem is that the collections of 1 horse do not when we choose another horse. Therefore,
we could have 2 horses such that one is of one color, and the other is of the other. Therefore,
statement for 1 horse doesn’t imply statement for 2 horses, so the inductive step doesn’t hold.

4. Proof. We prove by induction.

Base case: For n = 1, we have 12 + . . . + n2 is just 1 and n(n+1)(2n+1)
6

= 1(1+1)(2·1)
6

= 1·2·3
6

= 1.

Therefore, for n = 1, we have 12 + 22 + . . .+ n2 = n(n+1)(2n+1)
6

.

Inductive step: Suppose that for given n ∈ N, we have

12 + 22 + . . .+ n2 =
n(n+ 1)(2n+ 1)

6
.

Our goal is to show that

12 + 22 + . . .+ n2 + (n+ 1)2 =
[n+ 1]([n+ 1] + 1)(2[n+ 1] + 1)

6
,

i.e.,

12 + 22 + . . .+ n2 + (n+ 1)2 =
(n+ 1)(n+ 2)(2n+ 3)

6
.



Adding (n+ 1)2 to both sides of the inductive hypothesis, we get

12 + 22 + . . .+ n2 + (n+ 1)2 =
n(n+ 1)(2n+ 1)

6
+ (n+ 1)2

=
n(n+ 1)(2n+ 1)

6
+

6(n+ 1)(n+ 1)

6

=
(n+ 1)

6
(n(2n+ 1) + 6(n+ 1))

=
(n+ 1)

6
(2n2 + 7n+ 6)

=
(n+ 1)(n+ 2)(2n+ 3)

6

because
(n+ 2)(2n+ 3) = 2n2 + 4n+ 3n+ 6 = 2n2 + 7n+ 6.

Therefore, by the principle of mathematical induction, we proved that for each n ∈ N,

12 + 22 + . . .+ n2 =
n(n+ 1)(2n+ 1)

6
.

5. Proof. We prove by induction.

Base case: For n = 1, we have 1 + x+ x2 + . . .+ xn = 1 + x and

xn+1 − 1

x− 1
=

x2 − 1

x− 1
=

(x− 1)(x+ 1)

x− 1
= x+ 1

because x− 1 6= 0. Therefore, for n = 1, the statement is true.

Inductive step: Suppose that for given n ∈ N, we have

1 + x+ x2 + . . .+ xn =
xn+1 − 1

x− 1
.

Our goal is to show that

1 + x+ x2 + . . .+ xn + xn+1 =
x[n+1]+1 − 1

x− 1
,

i.e.,

1 + x+ x2 + . . .+ xn + xn+1 =
xn+2 − 1

x− 1
.



Adding xn+1 to both sides of the inductive hypothesis, we get

1 + x+ x2 + . . .+ xn + xn+1 =
xn+1 − 1

x− 1
+ xn+1

=
xn+1 − 1

x− 1
+

xn+1(x− 1)

x− 1

=
xn+1 − 1

x− 1
+

xn+2 − xn+1

x− 1

=
xn+1 − 1 + xn+2 − xn+1

x− 1

=
xn+2 − 1

x− 1
.

Therefore, by the principle of mathematical induction, we proved the statement for every
n ∈ N.

6. Proof. We use proof by induction.

Base case: Let n = 1. Then, 32n−1 + 1 = 32·1−1 + 1 = 4 and 4 divides 4. Therefore, 4 divides
(32n−1 + 1) if n = 1.

Inductive step: Suppose that for given n ∈ N, we have 4 divides (32n−1 + 1). Our goal is to
show that 4 divides (32[n+1]−1 + 1), i.e.,4 divides (32n+1 + 1).

We have

32n+1 + 1 = 32n−1 · 32 + 1 = 32n−1 · (8 + 1) + 1 = (32n−1 + 1) + 8 · 32n−1.

Since 4 divides (32n−1+1) (by inductive hypothesis) and 4 divides 8 · 32n−1 (because 8 · 32n−1 =
4 · (2 · 32n−1) = 4 · integer), we have 4 divides (32n+1 + 1).

Therefore, by the principle of the mathematical induction, we proved the statement for every
n ∈ N.


