
Homework 4 - Solutions

MAT 200, Instructor: Alena Erchenko

1. Proof. We prove by strong induction on n.

Base case: For n = 1, we have um+n = um+1 and um−1un + umun+1 = um−1u1 + umu2 =
um−1 + um = um+1 (by definition of Fibonacci sequence).

For n = 2, we have um+n = um+2 and um−1un + umun+1 = um−1u2 + umu3 = um−1 + 2um =
um+1 + um = um+2 (by definition of Fibonacci sequence). Therefore, um+n = um−1un + umun+1

for n = 1 and n = 2.

Inductive step: Assume that for some natural number k ≥ 2 we have um+i = um−1ui + umui+1

for all natural numbers 2 ≤ i ≤ k. We want to show that um+k+1 = um−1uk+1 + umuk+2. We
have

um+k+1 = um+k−1 + um+k (by the definition of the sequence)

= (um−1uk−1 + umuk) + (um−1uk + umuk+1) (by inductive hypothesis)

= um−1(uk−1 + uk) + um(uk + uk+1)

= um−1uk+1 + umuk+2 (by the definition of the sequence).

As a result,um+k+1 = um−1uk+1 + umuk+2.

By the strong principle of mathematical induction, um+n = um−1un + umun+1 for all natural
numbers m ≥ 2 and n ≥ 1.

2. Proof. We have:
13 − 2 · 12 − 1 + 2 = 1− 2− 1 + 2 = 0, so 1 ∈ Y ;

23 − 2 · 22 − 2 + 2 = 8− 8− 2 + 2 = 0, so 2 ∈ Y ;

33 − 2 · 32 − 3 + 2 = 27− 18− 3 + 2 = 8 6= 0, so 3 6∈ Y.

Since 3 ∈ X and 3 6∈ Y , we have X 6⊂ Y.

3. (a) Proof. True. If (A \ B) 6= ∅, then ∃x ∈ (A \ B). Then, x ∈ A and x 6∈ B, so A 6⊂ B.
Therefore, A 6= B.

(b) Proof. False. Consider A = {1} and B = {1, 2}. Then, A 6= B, A \ B = ∅. Notice that
B \ A = 2 6= ∅.

(c) Proof. False. Consider A = {1}, B = {2}, and C = {2}. Then, C 6⊂ A.

Also, A ∪B = {1, 2}, so C ⊂ (A ∪B).



4. Proof. First, we show that A \ (B ∪C) ⊂ (A \B)∩ (A \C). Let x ∈ A \ (B ∪C). Then, x ∈ A
and x 6∈ B ∪C, i.e., x 6∈ B and x 6∈ C. Since x ∈ A and x 6∈ B, we have x ∈ A \B. Also, since
x ∈ A and x 6∈ C, we have x ∈ A \ C. As a result, x ∈ (A \ B) ∩ (A \ C) because x ∈ A \ B
and x ∈ A \ C.

Second, we show that A \ (B ∪ C) ⊃ (A \ B) ∩ (A \ C). Let x ∈ (A \ B) ∩ (A \ C). Then,
x ∈ A\B and x ∈ A\C. Thus, x ∈ A and x 6∈ B and x 6∈ C, i.e, x 6∈ B∪C, so x ∈ A\ (B∪C).

Since A \ (B ∪ C) ⊂ (A \ B) ∩ (A \ C) and A \ (B ∪ C) ⊃ (A \ B) ∩ (A \ C), we have
A \ (B ∪ C) = (A \B) ∩ (A \ C).

5. Proof. We prove by induction.

Base case: Let A be a set of one element, i.e., A = {a}. Then, the only subsets are ∅ and {a}.
So, there are 2 subsets and 2n = 2 if n = 1.

Inductive step: Assume that a set of n elements has 2n subsets. We show that a set of n + 1
elements has 2n+1 subsets.

Let A be a set of n + 1 elements, i.e., A = {a1, a2, . . . , an, an+1}. Then, B = {a1, a2, . . . , an}
is a set of n elements and B ⊂ A, so B has 2n subsets by inductive hypothesis. All subsets
of A are either subsets of B or sets that are union of an+1 with a subset of B, so there are
2n + 2n = 2 · 2n = 2n+1 subsets of A. We proved inductive step.

Therefore, by the principle of mathematical induction, we have a set of n elements has 2n

subsets.

6. Proof. Let n ∈ N. Assume, for contradiction, that there is no prime number q such that
n < q ≤ 1 + n!, i.e., natural numbers n + 1, n + 2, . . . , 1 + n! are not primes. Therefore, there
exists a prime number p > 1 such that p|(1+n!). Moreover, p ≤ 1+n! (by the lemma in class).
Since p is prime and n + 1, n + 2, . . . , 1 + n! are not primes, we have that p ≤ n. Recall that
n! = n(n− 1) · . . . · 1 and 1 < p ≤ n. Thus, p|n!. Since p|n!, p|(1 + n!), and 1 = (1 + n!)− n!,
we have that 1 = pk − pl = p(k − l) for some integers k, l. Thus, p|1 and p ≤ 1 contradicting
the fact that p > 1. Therefore, there exists a prime number q such that n < q ≤ 1 + n!.


