Homework 4-Solutions

MAT 200, Instructor: Alena Erchenko

1. Proof. We prove by strong induction on n.

Base case: For $n=1$, we have $u_{m+n}=u_{m+1}$ and $u_{m-1} u_{n}+u_{m} u_{n+1}=u_{m-1} u_{1}+u_{m} u_{2}=$ $u_{m-1}+u_{m}=u_{m+1}$ (by definition of Fibonacci sequence).
For $n=2$, we have $u_{m+n}=u_{m+2}$ and $u_{m-1} u_{n}+u_{m} u_{n+1}=u_{m-1} u_{2}+u_{m} u_{3}=u_{m-1}+2 u_{m}=$ $u_{m+1}+u_{m}=u_{m+2}$ (by definition of Fibonacci sequence). Therefore, $u_{m+n}=u_{m-1} u_{n}+u_{m} u_{n+1}$ for $n=1$ and $n=2$.

Inductive step: Assume that for some natural number $k \geq 2$ we have $u_{m+i}=u_{m-1} u_{i}+u_{m} u_{i+1}$ for all natural numbers $2 \leq i \leq k$. We want to show that $u_{m+k+1}=u_{m-1} u_{k+1}+u_{m} u_{k+2}$. We have

$$
\begin{aligned}
u_{m+k+1} & =u_{m+k-1}+u_{m+k}(\text { by the definition of the sequence) } \\
& =\left(u_{m-1} u_{k-1}+u_{m} u_{k}\right)+\left(u_{m-1} u_{k}+u_{m} u_{k+1}\right) \text { (by inductive hypothesis) } \\
& =u_{m-1}\left(u_{k-1}+u_{k}\right)+u_{m}\left(u_{k}+u_{k+1}\right) \\
& =u_{m-1} u_{k+1}+u_{m} u_{k+2} \text { (by the definition of the sequence) } .
\end{aligned}
$$

As a result, $u_{m+k+1}=u_{m-1} u_{k+1}+u_{m} u_{k+2}$.
By the strong principle of mathematical induction, $u_{m+n}=u_{m-1} u_{n}+u_{m} u_{n+1}$ for all natural numbers $m \geq 2$ and $n \geq 1$.
2. Proof. We have:

$$
\begin{gathered}
1^{3}-2 \cdot 1^{2}-1+2=1-2-1+2=0, \text { so } 1 \in Y ; \\
2^{3}-2 \cdot 2^{2}-2+2=8-8-2+2=0, \text { so } 2 \in Y ; \\
3^{3}-2 \cdot 3^{2}-3+2=27-18-3+2=8 \neq 0, \text { so } 3 \notin Y .
\end{gathered}
$$

Since $3 \in X$ and $3 \notin Y$, we have $X \not \subset Y$.
3. (a) Proof. True. If $(A \backslash B) \neq \emptyset$, then $\exists x \in(A \backslash B)$. Then, $x \in A$ and $x \notin B$, so $A \not \subset B$. Therefore, $A \neq B$.
(b) Proof. False. Consider $A=\{1\}$ and $B=\{1,2\}$. Then, $A \neq B, A \backslash B=\emptyset$. Notice that $B \backslash A=2 \neq \emptyset$.
(c) Proof. False. Consider $A=\{1\}, B=\{2\}$, and $C=\{2\}$. Then, $C \not \subset A$.

Also, $A \cup B=\{1,2\}$, so $C \subset(A \cup B)$.
4. Proof. First, we show that $A \backslash(B \cup C) \subset(A \backslash B) \cap(A \backslash C)$. Let $x \in A \backslash(B \cup C)$. Then, $x \in A$ and $x \notin B \cup C$, i.e., $x \notin B$ and $x \notin C$. Since $x \in A$ and $x \notin B$, we have $x \in A \backslash B$. Also, since $x \in A$ and $x \notin C$, we have $x \in A \backslash C$. As a result, $x \in(A \backslash B) \cap(A \backslash C)$ because $x \in A \backslash B$ and $x \in A \backslash C$.
Second, we show that $A \backslash(B \cup C) \supset(A \backslash B) \cap(A \backslash C)$. Let $x \in(A \backslash B) \cap(A \backslash C)$. Then, $x \in A \backslash B$ and $x \in A \backslash C$. Thus, $x \in A$ and $x \notin B$ and $x \notin C$, i.e, $x \notin B \cup C$, so $x \in A \backslash(B \cup C)$.
Since $A \backslash(B \cup C) \subset(A \backslash B) \cap(A \backslash C)$ and $A \backslash(B \cup C) \supset(A \backslash B) \cap(A \backslash C)$, we have $A \backslash(B \cup C)=(A \backslash B) \cap(A \backslash C)$.
5. Proof. We prove by induction.

Base case: Let A be a set of one element, i.e., $A=\{a\}$. Then, the only subsets are \emptyset and $\{a\}$. So, there are 2 subsets and $2^{n}=2$ if $n=1$.
Inductive step: Assume that a set of n elements has 2^{n} subsets. We show that a set of $n+1$ elements has 2^{n+1} subsets.
Let A be a set of $n+1$ elements, i.e., $A=\left\{a_{1}, a_{2}, \ldots, a_{n}, a_{n+1}\right\}$. Then, $B=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ is a set of n elements and $B \subset A$, so B has 2^{n} subsets by inductive hypothesis. All subsets of A are either subsets of B or sets that are union of a_{n+1} with a subset of B, so there are $2^{n}+2^{n}=2 \cdot 2^{n}=2^{n+1}$ subsets of A. We proved inductive step.

Therefore, by the principle of mathematical induction, we have a set of n elements has 2^{n} subsets.
6. Proof. Let $n \in \mathbb{N}$. Assume, for contradiction, that there is no prime number q such that $n<q \leq 1+n$!, i.e., natural numbers $n+1, n+2, \ldots, 1+n$! are not primes. Therefore, there exists a prime number $p>1$ such that $p \mid(1+n!)$. Moreover, $p \leq 1+n$! (by the lemma in class). Since p is prime and $n+1, n+2, \ldots, 1+n$! are not primes, we have that $p \leq n$. Recall that $n!=n(n-1) \cdot \ldots \cdot 1$ and $1<p \leq n$. Thus, $p \mid n!$. Since $p|n!, p|(1+n!)$, and $1=(1+n!)-n!$, we have that $1=p k-p l=p(k-l)$ for some integers k, l. Thus, $p \mid 1$ and $p \leq 1$ contradicting the fact that $p>1$. Therefore, there exists a prime number q such that $n<q \leq 1+n$!.

