Homework 4

MAT 200, Instructor: Alena Erchenko

1. Let u_{n} be the nth Fibonacci number. Prove, by strong induction on n (without using the formula for u_{n} that we proved in class), that

$$
u_{m+n}=u_{m-1} u_{n}+u_{m} u_{n+1}
$$

for all natural numbers $m \geq 2$ and $n \geq 1$.
2. Prove that if $X=\{1,2,3\}$ and $Y=\left\{\right.$ solutions of $\left.x^{3}-2 x^{2}-x+2=0\right\}$, then $X \not \subset Y$.
3. Prove or disprove by providing counterexamples the following statements:
(a) If $(A \backslash B) \neq \emptyset$, then $A \neq B$.
(b) If $A \neq B$, then $A \backslash B \neq \emptyset$.
(c) If $C \not \subset A$, then $C \not \subset(A \cup B)$.
4. Show that for all sets A, B, C, we have $A \backslash(B \cup C)=(A \backslash B) \cap(A \backslash C)$.
5. Show that a set of n elements has 2^{n} subsets for $n \in \mathbb{N}$.
6. Prove that for each $n \in \mathbb{N}$, there exists a prime number q such that $n<q \leq 1+n$!.

Hint: Use proof by contradiction, lemma that for natural numbers a, b if a divides b, then $a \leq b$, definition of a factorial.

