Homework 5-Solutions

MAT 200, Instructor: Alena Erchenko

1. Suppose x is odd. Then, there exists $k \in \mathbb{Z}$ such that $x=2 k+1$. If $x=2 k+1$, then $x^{3}=(2 k+1)^{3}=2\left(2 k^{2}+2 k\right)+1$. Let $y=2 k^{2}+2 k$. Since y is an integer and $x^{3}=2 y+1$, we have x^{3} is odd.
2. Let x be an odd number. Then, there exists an integer k such that $x=2 k+1$. As a result, $x^{2}=(2 k+1)^{2}=4\left(k^{2}+k\right)+1$.
If k is an integer, then either k is even or k is odd.
Case 1: Assume k is even, i.e., $k=2 n$ where n is an integer. Then, $k^{2}+k=(2 n)^{2}+2 n=$ $2\left(2 n^{2}+n\right)$ and $x^{2}=8\left(2 n^{2}+n\right)+1$. Let $y=2 n^{2}+n$. Then, y is integer and $x^{2}=8 y+1$.
Case 2: Assume k is odd, i.e., $k=2 n+1$ where n is an integer. Then, $k^{2}+k=(2 n+1)^{2}+(2 n+$ $1)=(2 n+1)(2 n+2)=2(n+1)(2 n+1)$ and $x^{2}=8(n+1)(2 n+1)+1$. Let $y=(n+1)(2 n+1)$. Then, y is integer and $x^{2}=8 y+1$.
3. First, we show that $(A \cap B) \times C \subset(A \times C) \cap(B \times C)$. Let $x \in(A \cap B) \times C$, then $x=(y, c)$, where $y \in A \cap B$ and $c \in C$. Since $y \in A \cap B$, we have $y \in A$ and $y \in B$. Therefore, $x=(y, c) \in A \times C$ and $x=(y, c) \in B \times C$, so $x \in(A \times C) \cap(B \times C)$.
Moreover, we show that $(A \times C) \cap(B \times C) \subset(A \cap B) \times C$. Let $x \in(A \times C) \cap(B \times C)$, then $x \in(A \times C)$ and $x \in(B \times C)$. We have that $x=(y, c)$. Since $x \in(A \times C)$, we have $y \in A$ and $c \in C$. Since $x \in(B \times C)$, we have $y \in B$ and $c \in C$. Therefore, $y \in A$ and $y \in B$, so $y \in A \cap B$. As a result, $x=(y, c) \in(A \cap B) \times C$.
4. (a) We show that $\left(\bigcup_{n \in \mathbb{N}} A_{n}\right)^{c}=\bigcap_{n \in \mathbb{N}} A_{n}^{c}$.

First, we show that $\left(\bigcup_{n \in \mathbb{N}} A_{n}\right)^{c} \subset \bigcap_{n \in \mathbb{N}} A_{n}^{c}$. Let $x \in\left(\bigcup_{n \in \mathbb{N}} A_{n}\right)^{c}$, so $x \in A$ and $x \notin \bigcup_{n \in \mathbb{N}} A_{n}$, i.e., $x \notin A_{n}$ for all $n \in \mathbb{N}$. Therefore, $x \in A_{n}^{c}$ for all $n \in \mathbb{N}$, i.e., $x \in \bigcap_{n \in \mathbb{N}} A_{n}^{c}$.

Moreover, we show that $\bigcap_{n \in \mathbb{N}} A_{n}^{c} \subset\left(\bigcup_{n \in \mathbb{N}} A_{n}\right)^{c}$. Let $x \in \bigcap_{n \in \mathbb{N}} A_{n}^{c}$. Then, $x \in A_{n}^{c}$ for all $n \in \mathbb{N}$, so $x \in A$ and $x \notin A_{n}$ for all $n \in \mathbb{N}$, i.e., $x \notin \bigcup_{n \in \mathbb{N}} A_{n}$. Therefore, $x \in\left(\bigcup_{n \in \mathbb{N}} A_{n}\right)^{c}$.
(b) We show that $\left(\bigcap_{n \in \mathbb{N}} A_{n}\right)^{c}=\bigcup_{n \in \mathbb{N}} A_{n}^{c}$.

First, we show that $\left(\bigcap_{n \in \mathbb{N}} A_{n}\right)^{c} \subset \bigcup_{n \in \mathbb{N}} A_{n}^{c}$. Let $x \in\left(\bigcap_{n \in \mathbb{N}} A_{n}\right)^{c}$, so $x \in A$ and $x \notin \bigcap_{n \in \mathbb{N}} A_{n}$, i.e., there exists $\tilde{n} \in \mathbb{N}$ such that $x \notin A_{\tilde{n}}$. Therefore, $x \in A_{\tilde{n}}^{c}$ for some $\tilde{n} \in \mathbb{N}$, i.e., $x \in \bigcup_{n \in \mathbb{N}} A_{n}^{c}$.

Moreover, we show that $\bigcup_{n \in \mathbb{N}} A_{n}^{c} \subset\left(\bigcap_{n \in \mathbb{N}} A_{n}\right)^{c}$. Let $x \in \bigcup_{n \in \mathbb{N}} A_{n}^{c}$. Then, there exists $\tilde{n} \in \mathbb{N}$ such that $x \in A_{\tilde{n}}^{c}$, so $x \in A$ and $x \notin A_{\tilde{n}}$ for some $\tilde{n} \in \mathbb{N}$, i.e., $x \notin \bigcap_{n \in \mathbb{N}} A_{n}$. Therefore, $x \in\left(\bigcap_{n \in \mathbb{N}} A_{n}\right)^{c}$.
5. We show that $\bigcap_{n \in \mathbb{N}} A_{n}=\{0\}$.

First, we show that $\{0\} \subset \bigcap_{n \in \mathbb{N}} A_{n}$. Notice that for any $n \in \mathbb{N}$ we have $-\frac{1}{n}<0<\frac{1}{n}$, so $0 \in A_{n}$ for any $n \in \mathbb{N}$. Therefore, $0 \in \bigcap_{n \in \mathbb{N}} A_{n}$, so $\{0\} \subset \bigcap_{n \in \mathbb{N}} A_{n}$.
Moreover, we show that $\{0\} \supset \bigcap_{n \in \mathbb{N}} A_{n}$. Using the properties of the contraposition, we have that it is enough to show that if $x \notin\{0\}$, then $x \notin \bigcap_{n \in \mathbb{N}} A_{n}$. If $x \notin\{0\}$, then either $x>0$ or $x<0$.
Case 1: If $x>0$, then there exists $m \in \mathbb{N}$ such that $\frac{1}{m}<x$, so $x \notin A_{m}$. Since $x \notin A_{m}$, we have that $x \notin \bigcap_{n \in \mathbb{N}} A_{n}$.
Case 2: If $x<0$, then $-x>0$. Then, there exists $l \in \mathbb{N}$ such that $\frac{1}{l}<-x$, so $x<-\frac{1}{l}$ and $x \notin A_{l}$. Since $x \notin A_{l}$, we have that $x \notin \bigcap_{n \in \mathbb{N}} A_{n}$.
As a result, we have that if $x \notin\{0\}$, then $x \notin \bigcap_{n \in \mathbb{N}} A_{n}$. Therefore, by the equivalence of the statement and its contraposition, we have that if $x \in \bigcap_{n \in \mathbb{N}} A_{n}$, then $x \in\{0\}$, i.e., $\bigcap_{n \in \mathbb{N}} A_{n} \subset\{0\}$. From the above, we have $\bigcap_{n \in \mathbb{N}} A_{n}=\{0\}$.
6. We are given that $X \subset E \times F$. We need to show that $E \times F \subset \mathbb{R}^{2}$ and $E \times F \supset \mathbb{R}^{2}$.

Let $(a, b) \in E \times F$. Then, $a \in E$ and $b \in F$. If $a \in E$, then $a \in \mathbb{R}$ because $E \subset \mathbb{R}$. If $b \in F$, then $b \in \mathbb{R}$ because $F \subset \mathbb{R}$. Therefore, $(a, b) \in \mathbb{R}^{2}$ because $a \in \mathbb{R}$ and $b \in \mathbb{R}$. We showed that $E \times F \subset \mathbb{R}^{2}$.
Let $(a, b) \in \mathbb{R}^{2}$. Then, $a \in \mathbb{R}$ and $b \in \mathbb{R}$. Therefore, by definition of X, we have $(a, a) \in X$ and $(b, b) \in X$. Since $(a, a) \in X$ and $X \subset E \times F$, we have $a \in E$. Since $(b, b) \in X$ and $X \subset E \times F$, we have $b \in E$. Therefore, $(a, b) \in E \times F$. We showed that $E \times F \supset \mathbb{R}^{2}$.

