
Homework 5 - Solutions

MAT 200, Instructor: Alena Erchenko

1. Suppose x is odd. Then, there exists k ∈ Z such that x = 2k + 1. If x = 2k + 1, then
x3 = (2k + 1)3 = 2(2k2 + 2k) + 1. Let y = 2k2 + 2k. Since y is an integer and x3 = 2y + 1, we
have x3 is odd.

2. Let x be an odd number. Then, there exists an integer k such that x = 2k + 1. As a result,
x2 = (2k + 1)2 = 4(k2 + k) + 1.

If k is an integer, then either k is even or k is odd.

Case 1: Assume k is even, i.e., k = 2n where n is an integer. Then, k2 + k = (2n)2 + 2n =
2(2n2 + n) and x2 = 8(2n2 + n) + 1. Let y = 2n2 + n. Then, y is integer and x2 = 8y + 1.

Case 2: Assume k is odd, i.e., k = 2n+1 where n is an integer. Then, k2+k = (2n+1)2+(2n+
1) = (2n+1)(2n+2) = 2(n+1)(2n+1) and x2 = 8(n+1)(2n+1)+1. Let y = (n+1)(2n+1).
Then, y is integer and x2 = 8y + 1.

3. First, we show that (A ∩B)× C ⊂ (A× C) ∩ (B × C). Let x ∈ (A ∩B)× C, then x = (y, c),
where y ∈ A ∩ B and c ∈ C. Since y ∈ A ∩ B, we have y ∈ A and y ∈ B. Therefore,
x = (y, c) ∈ A× C and x = (y, c) ∈ B × C, so x ∈ (A× C) ∩ (B × C).

Moreover, we show that (A× C) ∩ (B × C) ⊂ (A ∩B)× C. Let x ∈ (A× C) ∩ (B × C), then
x ∈ (A × C) and x ∈ (B × C). We have that x = (y, c). Since x ∈ (A × C), we have y ∈ A
and c ∈ C. Since x ∈ (B × C), we have y ∈ B and c ∈ C. Therefore, y ∈ A and y ∈ B, so
y ∈ A ∩B. As a result, x = (y, c) ∈ (A ∩B)× C.
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⋂
n∈N

An. Therefore,

x ∈
( ⋂

n∈N
An

)c

.

5. We show that
⋂
n∈N

An = {0}.

First, we show that {0} ⊂
⋂
n∈N

An. Notice that for any n ∈ N we have − 1
n
< 0 < 1

n
, so 0 ∈ An

for any n ∈ N. Therefore, 0 ∈
⋂
n∈N

An, so {0} ⊂
⋂
n∈N

An.

Moreover, we show that {0} ⊃
⋂
n∈N

An. Using the properties of the contraposition, we have that

it is enough to show that if x 6∈ {0}, then x 6∈
⋂
n∈N

An. If x 6∈ {0}, then either x > 0 or x < 0.

Case 1: If x > 0, then there exists m ∈ N such that 1
m

< x, so x 6∈ Am. Since x 6∈ Am, we have
that x 6∈

⋂
n∈N

An.

Case 2: If x < 0, then −x > 0. Then, there exists l ∈ N such that 1
l
< −x, so x < −1

l
and

x 6∈ Al. Since x 6∈ Al, we have that x 6∈
⋂
n∈N

An.

As a result, we have that if x 6∈ {0}, then x 6∈
⋂
n∈N

An. Therefore, by the equivalence of the

statement and its contraposition, we have that if x ∈
⋂
n∈N

An, then x ∈ {0}, i.e.,
⋂
n∈N

An ⊂ {0}.

From the above, we have
⋂
n∈N

An = {0}.

6. We are given that X ⊂ E × F . We need to show that E × F ⊂ R2 and E × F ⊃ R2.

Let (a, b) ∈ E × F . Then, a ∈ E and b ∈ F . If a ∈ E, then a ∈ R because E ⊂ R. If b ∈ F ,
then b ∈ R because F ⊂ R. Therefore, (a, b) ∈ R2 because a ∈ R and b ∈ R. We showed that
E × F ⊂ R2.

Let (a, b) ∈ R2. Then, a ∈ R and b ∈ R. Therefore, by definition of X, we have (a, a) ∈ X and
(b, b) ∈ X. Since (a, a) ∈ X and X ⊂ E ×F , we have a ∈ E. Since (b, b) ∈ X and X ⊂ E ×F ,
we have b ∈ E. Therefore, (a, b) ∈ E × F . We showed that E × F ⊃ R2.


