Homework 5

MAT 200, Instructor: Alena Erchenko

1. Prove that for every integer x, if x is odd then x^{3} is odd.
2. Prove that for every integer x, if x is odd then there exists an integer y such that $x^{2}=8 y+1$.
3. Proof that for all sets A, B, and C, we have $(A \cap B) \times C=(A \times C) \cap(B \times C)$.
4. (DeMorgan's Laws) Prove that if $\left\{A_{n}\right\}_{n \in \mathbb{N}}$ is a collection of subsets of A, then

$$
\left(\bigcup_{n \in \mathbb{N}} A_{n}\right)^{c}=\bigcap_{n \in \mathbb{N}} A_{n}^{c}
$$

and

$$
\left(\bigcap_{n \in \mathbb{N}} A_{n}\right)^{c}=\bigcup_{n \in \mathbb{N}} A_{n}^{c}
$$

where the complements are taken relative to A.
5. For any $n \in \mathbb{N}$ define $A_{n}=\left(-\frac{1}{n}, \frac{1}{n}\right)=\left\{x \in \mathbb{R} \left\lvert\,-\frac{1}{n}<x<\frac{1}{n}\right.\right\}$. Find $\bigcap_{n \in \mathbb{N}} A_{n}$ and justify your answer with a proof.
6. Let $E \subset \mathbb{R}$ and $F \subset \mathbb{R}$. Let $X=\{(x, y) \mid x, y \in \mathbb{R}$ and $y=x\}$. Prove that if $X \subset E \times F$, then $E \times F=\mathbb{R}^{2}$.

