
Homework 6 - Solutions

MAT 200, Instructor: Alena Erchenko

1. Proof. If x = 0, then take q = 0 and r = 0.

If x is a natural number, then we proved it in class.

If x is an integer number which is not 0 and not a natural number, then −x is a natural number.
By the theorem in class, there exist a, b ∈ N ∪ {0} such that −x = da + b and b < d.

If b = 0, i.e., −x is divisible by d, then x is also divisible by d by Exercise 4 of Homework 1,
i.e., there exists q ∈ Z such that x = dq. Take r = 0 < d, then we have x = dq+ r where q ∈ Z,
r ∈ N ∪ {0} and r < d.

If −x is not divisible by d, then b ∈ (0, d). Notice that 0 < d− b < d. We have x = −da− b =
d(−a − 1) + (d − b). Let q = −a − 1 and r = d − b. Then, q ∈ Z, r ∈ N ∪ {0}, r < d, and
x = dq + r.

2. Proof. Let X be a non-empty collection of positive integers. Notice that X is bounded below,
because 0 ∈ Z and ∀x ∈ X we have 0 ≤ x. By the Well Ordering Principle, we have that there
exists m ∈ X such that ∀x ∈ X we have m ≤ x. Therefore, we showed that there exists a
smallest element in X.

Now we want to show that a smallest element in X is unique. Assume we have m1,m2 ∈ X
such that ∀x ∈ X we have m1 ≤ x and m2 ≤ x. Since m1 ∈ X, we have that m2 ≤ m1. Since
m2 ∈ X, we have that m1 ≤ m2. Therefore, m2 = m1 because m2 ≤ m1 and m1 ≤ m2. As a
result, we obtain that a smallest element in X is unique.

3. Proof. Assume there are q1, q2 ∈ Z and r1, r2 ∈ N ∪ {0} such that x = dq1 + r1, x = dq2 + r2,
r1 < d, and r2 < d. To prove the uniquness, we need to show that q1 = q2 and r1 = r2. Since
x = dq1 + r1 and x = dq2 + r2, we have that dq1 + r1 = dq2 + r2, so d(q1 − q2) = r2 − r1.

Case 1: If r2 − r1 ≥ 0, then 0 ≤ r2 − r1 ≤ r2 < d, where in the last inequality we used the
information that r2 < d. Moreover, since d(q1 − q2) = r2 − r1, we have that d divides r2 − r1
since q1 − q2 is an integer. If r2 − r1 = 0, i.e. r2 = r1, then q1 − q2 = 0 because d 6= 0, i.e.,
q1 = q2. If r2 − r1 6= 0, i.e., (r2 − r1) ∈ N, then by the lemma in class we have that d ≤ r2 − r1
because d divides r2 − r1. But r2 − r1 < d, so we obtain contradiction, and we should have
r2 = r1 what implies that q1 = q2.

Case 2:If r2 − r1 ≤ 0, then 0 ≤ r1 − r2 ≤ r1 < d, where in the last inequality we used the
information that r1 < d. Moreover, since d(q2 − q1) = r1 − r2, we have that d divides r1 − r2
since q2 − q1 is an integer. If r1 − r2 = 0, i.e. r1 = r2, then q2 − q1 = 0 because d 6= 0, i.e.,
q2 = q1. If r1 − r2 6= 0, i.e., (r1 − r2) ∈ N, then by the lemma in class we have that d ≤ r1 − r2
because d divides r1 − r2. But r1 − r2 < d, so we obtain contradiction, and we should have
r1 = r2 what implies that q1 = q2.

Therefore, we obtain that q and r in the statement of the exercise are unique.



4. Proof. Let X = {ax + by|x, y ∈ Z and ax + by > 0}. If a > 0, then a ∈ X because we can
take x = 1 ∈ Z and y = 0 ∈ Z, and we have a · 1 + b · 0 = a > 0. If a < 0, then −a > 0 and
−a ∈ X because we can take x = −1 ∈ Z and y = 0 ∈ Z, and we have a · (−1) + b ·0 = −a > 0.
Therefore, X is not empty. Moreover, since X is a collection of positive integers, we have
∀c ∈ X we have 0 ≤ c and 0 ∈ Z, so X is bounded below. Since X is non-empty subset of
integer numbers that is bounded below, by Well Ordering Principle, there exists d ∈ X such
that ∀c ∈ X we have d ≤ c. There exists s, t ∈ Z such that d = as + bt and d > 0 because
d ∈ X.

We show that d divides a. By the theorem in class, ∃q, r ∈ N ∪ {0} such that a = dq + r and
r < d. Since d = as + bt, we have r = a− dq = a− (as + bt)q = a(1− sq) + b(−tq). If r 6= 0,
then r ∈ X because (1− sq) ∈ Z, (−tq) ∈ Z, and r > 0. Notice that r < d and r ∈ X if r 6= 0,
what contradicts the fact that d is a smallest element in X. Therefore, r = 0, so a = dq, where
q ∈ Z, so d divides a.

Similarly to d divides a, it can be shown that d divides b.

Now we show that if c ∈ N, c divides a, and c divides b, then c divides d. Recall that d = as+bt,
where s, t ∈ Z. Since c divides a and c divides b, we have a = ck and b = cn, where k, n ∈ Z.
Therefore, we obtain that d = as+bt = cks+cnt = c(ks+nt) where (ks+nt) ∈ Z, so c divides
d.

5. Solution. Let u, v, and w be rational numbers. Then, u = p
q
, v = a

b
, and w = c

d
, where

p, q, a, b, c, d ∈ Z and q, b, d 6= 0.

(a) We have u−2v = p
q
−2a

b
= pb−2aq

qb
. If q 6= 0 and b 6= 0, then qb 6= 0. Since p, q, a, b, c, d ∈ Z,

pb− 2aq and qb are integers. Therefore, since u− 2v = pb−2aq
qb

, we have u− 2v is a rational
number.

(b) If w 6= 0, then uv
w

is well defined. In particular, if w = c
d

and w 6= 0, then c 6= 0. We have
uv
w

= pad
qbc

. If q, b, c 6= 0, then qbc 6= 0. Since p, q, a, b, c, d ∈ Z, pad and qbc are integers.

Therefore, since uv
w

= pad
qbc

, we have uv
w

is a rational number.


