Homework 6 - Solutions

MAT 200, Instructor: Alena Erchenko

1. Proof. If $x=0$, then take $q=0$ and $r=0$.

If x is a natural number, then we proved it in class.
If x is an integer number which is not 0 and not a natural number, then $-x$ is a natural number. By the theorem in class, there exist $a, b \in \mathbb{N} \cup\{0\}$ such that $-x=d a+b$ and $b<d$.
If $b=0$, i.e., $-x$ is divisible by d, then x is also divisible by d by Exercise 4 of Homework 1, i.e., there exists $q \in \mathbb{Z}$ such that $x=d q$. Take $r=0<d$, then we have $x=d q+r$ where $q \in \mathbb{Z}$, $r \in \mathbb{N} \cup\{0\}$ and $r<d$.
If $-x$ is not divisible by d, then $b \in(0, d)$. Notice that $0<d-b<d$. We have $x=-d a-b=$ $d(-a-1)+(d-b)$. Let $q=-a-1$ and $r=d-b$. Then, $q \in \mathbb{Z}, r \in \mathbb{N} \cup\{0\}, r<d$, and $x=d q+r$.
2. Proof. Let X be a non-empty collection of positive integers. Notice that X is bounded below, because $0 \in \mathbb{Z}$ and $\forall x \in X$ we have $0 \leq x$. By the Well Ordering Principle, we have that there exists $m \in X$ such that $\forall x \in X$ we have $m \leq x$. Therefore, we showed that there exists a smallest element in X.
Now we want to show that a smallest element in X is unique. Assume we have $m_{1}, m_{2} \in X$ such that $\forall x \in X$ we have $m_{1} \leq x$ and $m_{2} \leq x$. Since $m_{1} \in X$, we have that $m_{2} \leq m_{1}$. Since $m_{2} \in X$, we have that $m_{1} \leq m_{2}$. Therefore, $m_{2}=m_{1}$ because $m_{2} \leq m_{1}$ and $m_{1} \leq m_{2}$. As a result, we obtain that a smallest element in X is unique.
3. Proof. Assume there are $q_{1}, q_{2} \in \mathbb{Z}$ and $r_{1}, r_{2} \in \mathbb{N} \cup\{0\}$ such that $x=d q_{1}+r_{1}, x=d q_{2}+r_{2}$, $r_{1}<d$, and $r_{2}<d$. To prove the uniquness, we need to show that $q_{1}=q_{2}$ and $r_{1}=r_{2}$. Since $x=d q_{1}+r_{1}$ and $x=d q_{2}+r_{2}$, we have that $d q_{1}+r_{1}=d q_{2}+r_{2}$, so $d\left(q_{1}-q_{2}\right)=r_{2}-r_{1}$.
Case 1: If $r_{2}-r_{1} \geq 0$, then $0 \leq r_{2}-r_{1} \leq r_{2}<d$, where in the last inequality we used the information that $r_{2}<d$. Moreover, since $d\left(q_{1}-q_{2}\right)=r_{2}-r_{1}$, we have that d divides $r_{2}-r_{1}$ since $q_{1}-q_{2}$ is an integer. If $r_{2}-r_{1}=0$, i.e. $r_{2}=r_{1}$, then $q_{1}-q_{2}=0$ because $d \neq 0$, i.e., $q_{1}=q_{2}$. If $r_{2}-r_{1} \neq 0$, i.e., $\left(r_{2}-r_{1}\right) \in \mathbb{N}$, then by the lemma in class we have that $d \leq r_{2}-r_{1}$ because d divides $r_{2}-r_{1}$. But $r_{2}-r_{1}<d$, so we obtain contradiction, and we should have $r_{2}=r_{1}$ what implies that $q_{1}=q_{2}$.
Case 2:If $r_{2}-r_{1} \leq 0$, then $0 \leq r_{1}-r_{2} \leq r_{1}<d$, where in the last inequality we used the information that $r_{1}<d$. Moreover, since $d\left(q_{2}-q_{1}\right)=r_{1}-r_{2}$, we have that d divides $r_{1}-r_{2}$ since $q_{2}-q_{1}$ is an integer. If $r_{1}-r_{2}=0$, i.e. $r_{1}=r_{2}$, then $q_{2}-q_{1}=0$ because $d \neq 0$, i.e., $q_{2}=q_{1}$. If $r_{1}-r_{2} \neq 0$, i.e., $\left(r_{1}-r_{2}\right) \in \mathbb{N}$, then by the lemma in class we have that $d \leq r_{1}-r_{2}$ because d divides $r_{1}-r_{2}$. But $r_{1}-r_{2}<d$, so we obtain contradiction, and we should have $r_{1}=r_{2}$ what implies that $q_{1}=q_{2}$.
Therefore, we obtain that q and r in the statement of the exercise are unique.
4. Proof. Let $X=\{a x+b y \mid x, y \in \mathbb{Z}$ and $a x+b y>0\}$. If $a>0$, then $a \in X$ because we can take $x=1 \in \mathbb{Z}$ and $y=0 \in \mathbb{Z}$, and we have $a \cdot 1+b \cdot 0=a>0$. If $a<0$, then $-a>0$ and $-a \in X$ because we can take $x=-1 \in \mathbb{Z}$ and $y=0 \in \mathbb{Z}$, and we have $a \cdot(-1)+b \cdot 0=-a>0$. Therefore, X is not empty. Moreover, since X is a collection of positive integers, we have $\forall c \in X$ we have $0 \leq c$ and $0 \in \mathbb{Z}$, so X is bounded below. Since X is non-empty subset of integer numbers that is bounded below, by Well Ordering Principle, there exists $d \in X$ such that $\forall c \in X$ we have $d \leq c$. There exists $s, t \in \mathbb{Z}$ such that $d=a s+b t$ and $d>0$ because $d \in X$.
We show that d divides a. By the theorem in class, $\exists q, r \in \mathbb{N} \cup\{0\}$ such that $a=d q+r$ and $r<d$. Since $d=a s+b t$, we have $r=a-d q=a-(a s+b t) q=a(1-s q)+b(-t q)$. If $r \neq 0$, then $r \in X$ because $(1-s q) \in \mathbb{Z},(-t q) \in \mathbb{Z}$, and $r>0$. Notice that $r<d$ and $r \in X$ if $r \neq 0$, what contradicts the fact that d is a smallest element in X. Therefore, $r=0$, so $a=d q$, where $q \in \mathbb{Z}$, so d divides a.

Similarly to d divides a, it can be shown that d divides b.
Now we show that if $c \in \mathbb{N}, c$ divides a, and c divides b, then c divides d. Recall that $d=a s+b t$, where $s, t \in \mathbb{Z}$. Since c divides a and c divides b, we have $a=c k$ and $b=c n$, where $k, n \in \mathbb{Z}$. Therefore, we obtain that $d=a s+b t=c k s+c n t=c(k s+n t)$ where $(k s+n t) \in \mathbb{Z}$, so c divides d.
5. Solution. Let u, v, and w be rational numbers. Then, $u=\frac{p}{q}, v=\frac{a}{b}$, and $w=\frac{c}{d}$, where $p, q, a, b, c, d \in \mathbb{Z}$ and $q, b, d \neq 0$.
(a) We have $u-2 v=\frac{p}{q}-2 \frac{a}{b}=\frac{p b-2 a q}{q b}$. If $q \neq 0$ and $b \neq 0$, then $q b \neq 0$. Since $p, q, a, b, c, d \in \mathbb{Z}$, $p b-2 a q$ and $q b$ are integers. Therefore, since $u-2 v=\frac{p b-2 a q}{q b}$, we have $u-2 v$ is a rational number.
(b) If $w \neq 0$, then $\frac{w v}{w}$ is well defined. In particular, if $w=\frac{c}{d}$ and $w \neq 0$, then $c \neq 0$. We have $\frac{u v}{w}=\frac{p a d}{q b c}$. If $q, b, c \neq 0$, then $q b c \neq 0$. Since $p, q, a, b, c, d \in \mathbb{Z}, p a d$ and $q b c$ are integers. Therefore, since $\frac{u v}{w}=\frac{p a d}{q b c}$, we have $\frac{u v}{w}$ is a rational number.

