Homework 6

MAT 200, Instructor: Alena Erchenko

1. Show that if x is an integer number and d is a natural number, then there exist $q \in \mathbb{Z}$ and $r \in \mathbb{N} \cup\{0\}$ such that $x=d q+r$ and $r<d$.
2. Show that there exists a unique smallest element of a non-empty collection of distinct positive integers.
Hint: Apply Well Ordering principle for the existence. To show the uniqueness of the smallest element, assume that there are two smallest elements m_{1}, m_{2} in the set, and, using the definition of the smallest element, show that $m_{1}=m_{2}$.
3. In Exercise 1 you showed that if x is an integer number and d is a natural number, then there exist $q \in \mathbb{Z}$ and $r \in \mathbb{N} \cup\{0\}$ such that $x=d q+r$ and $r<d$. Show that such q and r are unique.

Hint: Assume there exists $q_{1}, q_{2} \in \mathbb{Z}$ and $r_{1}, r_{2} \in \mathbb{N} \cup\{0\}$ such that $x=d q_{1}+r_{1}$ and $x=d q_{2}+r_{2}$ and $r_{1}<d$ and $r_{2}<d$. Then, show that $q_{1}=q_{2}$ and $r_{1}=r_{2}$.
4. (Existence of the Greatest Common Factor) Let $a, b \in \mathbb{N}$. Show that there exists $d \in \mathbb{N}$ such that
(a) d divides a and d divides b;
(b) If $c \in \mathbb{N}, c$ divides a, and c divides b, then c divides d.

Hint: Consider a set $X=\{a x+b y \mid x, y \in \mathbb{Z}$ and $a x+b y>0\}$. Prove that X is not empty subset of \mathbb{Z} that is bounded below and apply Well Ordering Principle. As a result, you will get a smallest element (call it d) in X. The property (b) described in the definition of the greatest common divisor follows easily if you understand how d looks like since $d \in X$. To prove that d divides a, apply the division lemma to a and d, so $a=d q+r$ for some $q, r \in \mathbb{N} \cup\{0\}$ such that $r<d$. Show that $r=0$ by contradiction, using the fact that d is the smallest in X and $r<d$. Similarly, you can show that d divides b.
5. Let u, v, and w be rational numbers. Prove the following statements using the definition of rational numbers:
(a) $u-2 v$ is a rational number.
(b) If $w \neq 0$, then $\frac{u v}{w}$ is a rational number.

