Homework 8 - Solutions

MAT 200, Instructor: Alena Erchenko

1. Solution. (a) Reflexive: We showed in class that for any $a \in \mathbb{Z}$ we have $a^{2} \geq 0$. Thus, $a R a$ for any $a \in \mathbb{Z}$.
Symmetric: From the commutativity of the multiplication of integers, we have that for any $a, b \in \mathbb{Z}$ if $a b \geq 0$ then $b a \geq 0$. Thus, if $a R b$ then $b R a$.
 but $a c=-1<0$, so a is not related to c.
Not Equivalence: Since the relation is not transitive, it is not an equivalence relation.
(b) Reflexive: We have for any $A \in \mathcal{P}(Y)$ that $A \subset A$, so $A R A$.

Not Symmetric: Let $A=\emptyset$ and $B=Y$, then $A \subset B$ but $B \not \subset A$ because $B \neq \emptyset$. Thus, A is related to B, but B is not related to A.
Transitive: Let $A, B, C \in \mathcal{P}(Y)$. Assume that $A \subset B, B \subset C$. Then, for any $a \in A$ we have that $a \in B$ because $A \subset B$, so $a \in C$ because $B \subset C$. Thus, $A \subset C$. As a result, if $A R B$ and $B R C$, then $A R C$.
Not Equivalence: Since the relation is not symmetric, it is not an equivalence relation.
(c) Not reflexive: Let $n=2 \in \mathbb{N}$. Then, $n+n=4$ which is not prime, so n is not related to n.
Symmetric: From the commutativity of the summation on \mathbb{N}, we have that for any $n, m \in$ $\overline{\mathbb{N}}$ if $n+m$ is a prime then $m+n$ is a prime. Thus, if $n R m$ then $m R n$.
Not Transitive: Let $n=2, m=3$, and $l=4$. Then, $n+m=5$ is a prime, $m+l=7$ is a prime, but $n+l=6=2 \cdot 3$ is not a prime. Thus, for chosen n, m, l we have that $n R m$ and $m R l$, but n is not related to l.
Not Equivalence: Since the relation is not reflexive, it is not an equivalence relation.
2. Proof. We show that the relation is reflexive, symmetric, and transitive, what implies that it is an equivalence relation.
Reflexive: For any $x \in \mathbb{Z}$ we have that $x \equiv x(\bmod n)$ because $x-x=0$ and n divides 0 .
Symmetric: Assume that $x, y \in \mathbb{Z}$ and $x \equiv y(\bmod n)$. Then, n divides $(x-y)$. By Exercise 4 in Homework 1, we obtain that n divides $-(x-y)$, i.e., n divides $(y-x)$, so $y \equiv x(\bmod n)$.
Transitive: Let $x, y, z \in \mathbb{Z}$. Assume that $x \equiv y(\bmod n)$ and $y \equiv z(\bmod n)$. We want to show that $x \equiv z(\bmod n)$. Since $x \equiv y(\bmod n)$, we have that n divides $x-y$, so $x-y=n k$ for some $k \in \mathbb{Z}$, so $x=y+n k$. Since $y \equiv z(\bmod n)$, we have that n divides $y-z$, so $y-z=n l$ for some $l \in \mathbb{Z}$, so $y=z+n l$. Therefore, $x=z+n l+n k=z+n(l+k)$, so $x-z=n(l+k)$ where $(l+k) \in \mathbb{Z}$. Thus, n divides $x-z$, so $x \equiv z(\bmod n)$.
3. Proof. Assume that $a \equiv b(\bmod n)$. Then, n divides $(a-b)$, so $(a-b)=n k$ for some $k \in \mathbb{Z}$. We have $c a-c b=c(a-b)=c n k=n(c k)$ where $c k \in \mathbb{Z}$ because $c, k \in \mathbb{Z}$, so n divides $(c a-c b)$, i.e., $c a \equiv c b(\bmod n)$.
4. Proof. Since $a_{1} \equiv b_{1}(\bmod n)$, we have n divides $a_{1}-b_{1}$, so $a_{1}-b_{1}=n k$ for some $k \in \mathbb{Z}$. Since $a_{2} \equiv b_{2}(\bmod n)$, we have n divides $a_{2}-b_{2}$, so $a_{2}-b_{2}=n l$ for some $l \in \mathbb{Z}$. We have

$$
\left(a_{1}+a_{2}\right)-\left(b_{1}+b_{2}\right)=\left(a_{1}-b_{1}\right)+\left(a_{2}-b_{2}\right)=n k-n l=n(k-l)
$$

where $(k-l) \in \mathbb{Z}$, so n divides $\left(a_{1}+a_{2}\right)-\left(b_{1}+b_{2}\right)$, i.e., $a_{1}+a_{2} \equiv b_{1}+b_{2}(\bmod n)$.
5. Solution. (a) It is true. We can prove by induction that $9^{n} \equiv 1(\bmod 8)$ if $n \in \mathbb{N}$, in particular, $9^{73} \equiv 1(\bmod 8)$.
Base case: $9^{1}=9$ and $9 \equiv 1(\bmod 8)$ because $9-1=8$ and 8 divides 8 .
Inductive step: Assume $9^{n} \equiv 1(\bmod 8)$. We show that $9^{n+1} \equiv 1(\bmod 8)$. We have $9^{n+1}=9^{n} \cdot 9,9^{n} \equiv 1(\bmod 8)$ by inductive hypothesis, and $9 \equiv 1(\bmod 8)$ by base case, so $9^{n+1} \equiv 1(\bmod 9)$.
Therefore, by the principle of mathematical induction, we have that $9^{n} \equiv 1(\bmod 8)$ for all $n \in \mathbb{N}$.
(b) It is true. We have $14^{198}=7 \cdot 7^{197} \cdot 2^{198}$, so $14^{198} \equiv 0(\bmod 7)$. Also, $-2 \equiv 5(\bmod 7)$ because $5-(-2)=7$ and 7 divides 7 . Therefore, $14^{198}-2 \equiv 0+5(\bmod 7)$, so $14^{198}-2 \equiv 5$ $(\bmod 7)$.
6. We have

$$
\begin{aligned}
n & =a_{3} a_{2} a_{1} a_{0}=a_{3} \cdot 1000+a_{2} \cdot 100+a_{1} \cdot 10+a_{0} \\
& =a_{3}(1001-1)+a_{2}(99+1)+a_{1}(11-1)+a_{0} \\
& =\left(1001 a_{3}+99 a_{2}+11 a_{1}\right)+\left(a_{0}-a_{1}+a_{2}-a_{3}\right) \\
& =11\left(91 a_{3}+9 a_{2}+a_{1}\right)+\left(a_{0}-a_{1}+a_{2}-a_{3}\right) .
\end{aligned}
$$

Thus, since $\left(91 a_{3}+9 a_{2}+a_{1}\right) \in \mathbb{Z}$, we obtain that

$$
n \equiv a_{0}-a_{1}+a_{2}-a_{3} \quad(\bmod 11)
$$

Moreover, 11 divides n if and only if $n \equiv 0(\bmod 11)$ (using the theorem in one of the classes). Using transitivity of the congruence modulo 11 , we have that $n \equiv 0(\bmod 11)$ if and only if $a_{0}-a_{1}+a_{2}-a_{3} \equiv 0(\bmod 11)$ which is if and only if 11 divides $a_{0}-a_{1}+a_{2}-a_{3}$.

