Homework 8

MAT 200, Instructor: Alena Erchenko

1. For each of the following relations, denoted by R, on the set X determine whether it is reflexive, whether it is symmetric, whether it is transitive, and whether it is an equivalence relation.
(a) For $X=\mathbb{Z}$, put $a R b$ if and only if $a b \geq 0$;
(b) For $X=\mathcal{P}(Y)$ for some set $Y \neq \emptyset$, put $A R B$ if and only if $A \subset B$.
(c) For $X=\mathbb{N}$, put $n R m$ if and only if $n+m$ is a prime.
2. Let $n \in \mathbb{Z} \backslash\{0\}$. Show that the congruence modulo n is an equivalence relation on \mathbb{Z}.
3. Let $a, b, c \in \mathbb{Z}$ and $n \in \mathbb{Z} \backslash\{0\}$. Prove that if $a \equiv b(\bmod n)$, then $c a \equiv c b(\bmod n)$.
4. Let $a_{1}, b_{1}, a_{2}, b_{2} \in \mathbb{Z}$ and $n \in \mathbb{Z} \backslash\{0\}$. Suppose $a_{1} \equiv b_{1}(\bmod n)$ and $a_{2} \equiv b_{2}(\bmod n)$. Show that $a_{1}+a_{2} \equiv b_{1}+b_{2}(\bmod n)$.
5. Are the following statements true or false? Explain your answer.
(a) $9^{73} \equiv 1 \bmod 8$.
(b) $14^{198}-2 \equiv 5 \bmod 7$.
6. Suppose that a positive integer n is written in decimal notation as $n=a_{3} a_{2} a_{1} a_{0}$ where for all $i \in\{0,1,2,3\}$ we have $0 \leq a_{i} \leq 9$. Prove that n is divisible by 11 if and only if the alternating sum of its digits $a_{0}-a_{1}+a_{2}-a_{3}$ is divisible by 11 .
