Homework 8

MAT 200, Instructor: Alena Erchenko

- 1. For each of the following relations, denoted by R, on the set X determine whether it is reflexive, whether it is symmetric, whether it is transitive, and whether it is an equivalence relation.
 - (a) For $X = \mathbb{Z}$, put aRb if and only if $ab \ge 0$;
 - (b) For $X = \mathcal{P}(Y)$ for some set $Y \neq \emptyset$, put ARB if and only if $A \subset B$.
 - (c) For $X = \mathbb{N}$, put nRm if and only if n + m is a prime.
- 2. Let $n \in \mathbb{Z} \setminus \{0\}$. Show that the congruence modulo n is an equivalence relation on \mathbb{Z} .
- 3. Let $a, b, c \in \mathbb{Z}$ and $n \in \mathbb{Z} \setminus \{0\}$. Prove that if $a \equiv b \pmod{n}$, then $ca \equiv cb \pmod{n}$.
- 4. Let $a_1, b_1, a_2, b_2 \in \mathbb{Z}$ and $n \in \mathbb{Z} \setminus \{0\}$. Suppose $a_1 \equiv b_1 \pmod{n}$ and $a_2 \equiv b_2 \pmod{n}$. Show that $a_1 + a_2 \equiv b_1 + b_2 \pmod{n}$.
- 5. Are the following statements true or false? Explain your answer.
 - (a) $9^{73} \equiv 1 \mod 8$.
 - (b) $14^{198} 2 \equiv 5 \mod 7$.
- 6. Suppose that a positive integer n is written in decimal notation as $n = a_3 a_2 a_1 a_0$ where for all $i \in \{0, 1, 2, 3\}$ we have $0 \le a_i \le 9$. Prove that n is divisible by 11 if and only if the alternating sum of its digits $a_0 a_1 + a_2 a_3$ is divisible by 11.