Homework 9 - Solutions

MAT 200, Instructor: Alena Erchenko

1. Solution. We show that there is no $x \in \mathbb{Z}$ such that $15 x \equiv 5(\bmod 3)$. Assume, for contradiction, that there exists $x \in \mathbb{Z}$ such that $15 x \equiv 5(\bmod 3)$. Then, there exists $k \in \mathbb{Z}$ such that $5-15 x=3 k$, so $5=3(k-5 x)$ where $(k-5 x) \in \mathbb{Z}$. Thus, 3 divides 5 contradicting the fact that 3 doesn't divide 5 .
2. Solution. To determine whether f is an injection:

Let $x_{1}, x_{2} \in \mathbb{R}$ such that $f\left(x_{1}\right)=f\left(x_{2}\right)$, i.e., $\left(3 x_{1}^{2}, x_{1}^{2}-3\right)=\left(3 x_{2}^{2}, x_{2}^{2}-3\right)$. Then, $3 x_{1}^{2}=3 x_{2}^{2}$ and $x_{1}^{2}-3=x_{2}^{2}-3$. Then, $x_{1}^{2}=x_{2}^{2}$. So, $x_{1}=x_{2}$ or $x_{1}=-x_{2}$. Since $\operatorname{Dom}(f)=\mathbb{R}$, both options are possible. Notice that $f(1)=(3,-2)$ and $f(-1)=(3,-2)$. So, $f(1)=f(-1)$. Therefore, f is not an injection.
To determine whether f is a surjection:
We have $\operatorname{Dom}(f)=\mathbb{R}$ and $\operatorname{Codom}(f)=\mathbb{R}^{2}$. Consider $(a, b) \in \operatorname{Codom}(f)$, i.e., $a \in \mathbb{R}$ and $b \in \mathbb{R}$. We want to see if there exists $x \in \mathbb{R}$, such that $f(x)=(a, b)$. Assume such x exists, then $f(x)=(a, b)$, so $\left(3 x^{2}, x^{2}-3\right)=(a, b)$. Then, $3 x^{2}=a$ and $x^{2}-3=b$. In particular, to have solution for $3 x^{2}=a$, we need to have $a \geq 0$. Notice that $(-1,2) \in \mathbb{R}^{2}$, and there is no $x \in \mathbb{R}$ such that $f(x)=(-1,2)$ because $-1<0$. Therefore, f is not a surjection.
3. Solution. To determine whether f is an injection:

Let $x_{1}, x_{2} \in \mathbb{R}$ such that $f\left(x_{1}\right)=f\left(x_{2}\right)$, i.e., $\left(3 x_{1}, x_{1}^{2}-3\right)=\left(3 x_{2}, x_{2}^{2}-3\right)$. Then, $3 x_{1}=3 x_{2}$ and $x_{1}^{2}-3=x_{2}^{2}-3$. Then, $x_{1}=x_{2}$ and $x_{1}^{2}=x_{2}^{2}$. So, $x_{1}=x_{2}$. Therefore, f is an injection.
To determine whether f is a surjection:
We have $\operatorname{Dom}(f)=\mathbb{R}$ and $\operatorname{Codom}(f)=\mathbb{R}^{2}$. Consider $(a, b) \in \operatorname{Codom}(f)$, i.e., $a \in \mathbb{R}$ and $b \in \mathbb{R}$. We want to see if there exists $x \in \mathbb{R}$, such that $f(x)=(a, b)$. Assume such x exists, then $f(x)=(a, b)$, i.e., $\left(3 x, x^{2}-3\right)=(a, b)$. Then, $3 x=a$ and $x^{2}-3=b$. In particular, $x=\frac{a}{3}$ and $b=\left(\frac{a}{3}\right)^{2}-3$. Notice that $(3,2) \in \mathbb{R}^{2}$, i.e., $(3,2) \in \operatorname{Codom}(f)$. If there exists $x \in \mathbb{R}$ such that $f(x)=(3,2)$, then, by the above, we have $x=1$ and $2=1^{2}-3=-2$. Since $2 \neq-2$, there is no $x \in \mathbb{R}$ such that $f(x)=(3,2)$. Therefore, f is not a surjection.
4. Proof. We have that if $x \in A \cup B$, then $h(x)=f(x)$ if $x \in A$ or $h(x)=g(x)$ if $x \in B$. Therefore, if $x \in A \cap B$, then $h(x)=f(x)$ and $h(x)=g(x)$. Therefore, to have h to be well-defined, we should have $f(x)=g(x)$ for all $x \in A \cap B$.
5. Proof. Notice that $\operatorname{Dom}(f)=\mathbb{R}^{2}$ and $\operatorname{Codom}(f)=\mathbb{R}^{2}$. To show that f is a bijection, we need to show that f is an injection and a surjection.
Injection: Assume that $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}$ and $f\left(x_{1}, y_{1}\right)=f\left(x_{2}, y_{2}\right)$. Then, $\left(x_{1}-y_{1}, 2 x_{1}\right)=$ $\left.\overline{\left(x_{2}-y_{2}, 2\right.} x_{2}\right)$, so $x_{1}-y_{1}=x_{2}-y_{2}$ and $2 x_{1}=2 x_{2}$. Since $2 x_{1}=2 x_{2}$, we have that $x_{1}=x_{2}$, so
$x_{1}-y_{1}=x_{2}-y_{1}$. Therefore, $x_{2}-y_{1}=x_{2}-y_{2}$ because $x_{1}-y_{1}=x_{2}-y_{2}$ and $x_{1}-y_{1}=x_{2}-y_{1}$. Then, $y_{1}=y_{2}$. As a result, we have $\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right)$ because $x_{1}=x_{2}$ and $y_{1}=y_{2}$. So, f is injective.
Surjection: Let $(a, b) \in \mathbb{R}^{2}$. We want to find $(x, y) \in \mathbb{R}^{2}$ such that $f(x, y)=(a, b)$. If $f(x, y)=$ $\overline{(a, b) \text {, then }}(x-y, 2 x)=(a, b)$, i.e., $x-y=a$ and $2 x=b$, so $x=\frac{b}{2}$ and $y=x-a=\frac{b}{2}-a$. Notice that $\frac{b}{2} \in \mathbb{R}$ and $\left(\frac{b}{2}-a\right) \in \mathbb{R}$. Therefore, for any $(a, b) \in \mathbb{R}^{2}$ there exists $(x, y)=\left(\frac{b}{2}, \frac{b}{2}-a\right) \in \mathbb{R}^{2}$ such that $f(x, y)=f\left(\frac{b}{2}, \frac{b}{2}-a\right)=(a, b)$. So, f is surjective.
Since f is injective and surjective, we have that f is bijective.
6. Proof. Let $X=\{1\}$ and $Y=\{-1,1\}$. Define $f(1)=1$ and $g(y)=y^{2}$ if $y \in Y$. Notice that $\{1\} \subset Y$, so $f: X \rightarrow Y$. Moreover, $(-1)^{2}=1^{2}=1$, so $g: Y \rightarrow X$. Then, f is not surjective because $-1 \in Y$ but $-1 \notin \operatorname{Im}(f), g$ is not injective because $-1 \neq 1,-1,1 \in Y$ and $g(-1)=g(1)$. We have $g \circ f(1)=g(f(1))=g(1)=1^{1}=1$. Since $X=\{1\}$ and $g \circ f(1)=1$, we have that $g \circ f=i d_{X}$.

