Homework 9

MAT 200, Instructor: Alena Erchenko

1. Does there exists $x \in \mathbb{Z}$ such that $15 x \equiv 5(\bmod 3)$? Explain your answer.
2. Consider a function $f: \mathbb{R} \rightarrow \mathbb{R}^{2}$ defined as $f(x)=\left(3 x^{2}, x^{2}-3\right)$ for all $x \in \mathbb{R}$. Determine whether f is injective and whether f is surjective and explain your answer.
3. Consider a function $f: \mathbb{R} \rightarrow \mathbb{R}^{2}$ defined as $f(x)=\left(3 x, x^{2}-3\right)$ for all $x \in \mathbb{R}$. Determine whether f is injective and whether f is surjective and explain your answer.
4. Let A and B be sets, let f be a function on A, and let g be a function on B. If we try to define a function on $A \cup B$ by letting

$$
h(x)=\left\{\begin{array}{l}
f(x) \text { if } x \in A \\
g(x) \text { if } x \in B
\end{array}\right.
$$

what do we need to know about f and g to be sure that h is a well-defined function?
5. Prove $f(x, y)=(x-y, 2 x)$ defines a bijective function $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$.
6. Give an example of sets X and Y and functions $f: X \rightarrow Y, g: Y \rightarrow X$ such that $g \circ f=i d_{X}$, yet f isn't surjective and g isn't injective.

