Homework 10 - Solutions

MAT 200, Instructor: Alena Erchenko

1. (a) Proof. Since B is non-empty, then $\exists b \in B$. We have $\operatorname{Codom}\left(\pi_{A}\right)=A$. Let $a \in A$. Then, $(a, b) \in A \times B$ because $a \in A$ and $b \in B$. Moreover, $\pi_{A}(a, b)=a$. Therefore, by definition of surjection, π_{A} is a surjection because a was any element in A.
(b) Proof. If B has only one element, then π_{A} is an injection. Let $B=\{b\}$. Then, $A \times B=$ $\{(x, b) \mid x \in A\}$. Assume $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right) \in A \times B$ and $\pi_{A}\left(a_{1}, b_{1}\right)=\pi_{A}\left(a_{2}, b_{2}\right)$. Since $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right) \in A \times B$, then $b_{1}=b_{2}=b$ and $a_{1}, a_{2} \in A$. Moreover, $\pi_{A}\left(a_{1}, b_{1}\right)=a_{1}$ and $\pi_{A}\left(a_{2}, b_{2}\right)=a_{2}$, so $a_{1}=a_{2}$. Therefore, $\left(a_{1}, b_{1}\right)=\left(a_{2}, b_{2}\right)$, so π_{A} is an injection if B has only one element.
If b has at least two distinct elements, then $p i_{A}$ is not an injection. Because let $b_{1}, b_{2} \in B$ and $b_{1} \neq b_{2}$. Let $a \in A$. Then, $\pi_{A}\left(a, b_{1}\right)=a=\pi_{A}\left(a, b_{2}\right)$, but $\left(a, b_{1}\right) \neq\left(a, b_{2}\right)$. Therefore, π_{A} is not an injection in that case.
2. Proof. \Leftarrow : Assume there exists a function $g: Y \rightarrow X$ such that $f \circ g=i d_{Y}$. We show that f is surjective. Notice that since $f \circ g=i d_{Y}$ and $i d_{Y}$ is a well-defined function on Y, we have that $f \circ g$ is a well-defined function on Y. Let $y \in Y$. Then, $(f \circ g)(y)=f(g(y))=i d_{Y}(y)=y$. Moreover, $g(y) \in X$ because g is a function and $\operatorname{Codom}(g)=X$. In particular, $g(y) \in \operatorname{Dom}(f)$ because $\operatorname{Dom}(f)=X$. As a result, for any $y \in \operatorname{Codom}(f)$ there exists $x_{y}=g(y) \in \operatorname{Dom}(f)$ such that $f\left(x_{y}\right)=y$. Therefore, f is surjective.
\Rightarrow : Assume f is surjective. We show that there exists a function $g: Y \rightarrow X$ such that $f \circ g=$ $i d_{Y}$. Since f is surjective, for any $y \in Y$ there exists $x \in X$ such that $f(x)=y$. For any $y \in Y$ choose $x_{y} \in X$ such that $f\left(x_{y}\right)=y$ and define $g(y)=x_{y}$. Then, g is a well defined function from Y to X because it is defined for all $y \in Y$ and any $y \in Y$ is mapped to only one point in X. In particular, $\operatorname{Im}(g) \subset \operatorname{Dom}(f)$ and $f \circ g$ is a well-defined function from Y to Y. Moreover, for any $y \in Y$, we have that $(f \circ g)(y)=f(g(y))=f\left(x_{y}\right)=y$. So, $f \circ g=i d_{Y}$. Therefore, we constructed a function g with desired properties.
3. Proof. \Leftarrow : Assume there exists a function $g: Y \rightarrow X$ such that $g \circ f=i d_{X}$. We show that f is injective. Notice that since $g \circ f=i d_{X}$ and $i d_{X}$ is a well-defined function on X, we have that $g \circ f$ is a well-defined function on X. Let $x_{1}, x_{2} \in X$ such that $f\left(x_{1}\right)=f\left(x_{2}\right)$. Then, $g\left(f\left(x_{1}\right)\right)=g\left(f\left(x_{2}\right)\right)$ because g is a function on Y and $\operatorname{Codom}(f)=Y$. Moreover, we have $x_{1}=i d_{X}\left(x_{1}\right)=(g \circ f)\left(x_{1}\right)=g\left(f\left(x_{1}\right)\right)$ and $x_{2}=i d_{X}\left(x_{2}\right)=(g \circ f)\left(x_{2}\right)=g\left(f\left(x_{2}\right)\right)$ because $g \circ f=i d_{X}$. As a result, we obtain that $x_{1}=x_{2}$. So, f is injective.
\Rightarrow : Assume f is injective. We show that there exists a function $g: Y \rightarrow X$ such that $g \circ f=i d_{X}$. Since f is injective, so for any $y \in \operatorname{Im}(f)$ there exists a unique $x_{y} \in \operatorname{Dom}(f)$ such that $f\left(x_{y}\right)=y$. Define $g(y)=x_{y}$ for any $y \in \operatorname{Im}(f)$. Recall that X is non-empty, so choose some $a \in X$. Define $g(y)=a$ for any $y \in \operatorname{Codom}(f) \backslash \operatorname{Im}(f)$. Then, g is a well defined function from Y to X because it is defined for all $y \in Y$ and any $y \in Y$ is mapped to only one point in X.

Also, $\operatorname{Im}(f) \subset \operatorname{Dom}(g)$ and $g \circ f$ is a well-defined function from X to X. For any $x \in X$ there exists $y \in \operatorname{Im}(f)$ such that $x=x_{y}$, so

$$
(g \circ f)(x)=(g \circ f)\left(x_{y}\right)=g\left(f\left(x_{y}\right)\right)=g(y)=x_{y}=x
$$

Therefore, $g \circ f=i d_{X}$.
4. Proof. We claim that the function $g: \mathbb{R} \rightarrow \mathbb{R}$ defined by $g(y)=y^{\frac{1}{3}}+1$ for all $y \in \mathbb{R}$ is the inverse of f.
Notice that g is well-defined on \mathbb{R}.
For all $x \in \mathbb{R}$, we have

$$
g \circ f(x)=g(f(x))=g\left((x-1)^{3}\right)=\left((x-1)^{3}\right)^{\frac{1}{3}}+1=x-1+1=x .
$$

Thus, $g \circ f=i d_{\mathbb{R}}$.
Moreover, for all $y \in \mathbb{R}$, we have

$$
f \circ g(y)=f(g(y))=f\left(y^{\frac{1}{3}}+1\right)=\left(\left(y^{\frac{1}{3}}+1\right)-1\right)^{3}=\left(y^{\frac{1}{3}}\right)^{3}=y
$$

Thus, $f \circ g=i d_{\mathbb{R}}$.
By the definition of the inverse of a function, we have g is the inverse of f, i.e., $f^{-1}=g$.
5. Proof. Since A has n elements, there exists a bijection $f: A \rightarrow\{1,2, \ldots, n\}$. Since B has m elements, there exists a bijection $g: B \rightarrow\{1,2, \ldots, m\}$.
Define $\tilde{g}: B \rightarrow\{n+1, n+2, \ldots, n+m\}$ by $\tilde{g}(b)=n+g(b)$. Notice that \tilde{g} is a function because g is a function and to each value in B we assigned only one value in $\{n+1, n+2, \ldots, n+m\}$. We show that \tilde{g} is a bijection. Assume $b_{1}, b_{2} \in B$ such that $\tilde{g}\left(b_{1}\right)=\tilde{g}\left(b_{2}\right)$. Then, $n+g\left(b_{1}\right)=n+g\left(b_{2}\right)$, so $g\left(b_{1}\right)=g\left(b_{2}\right)$ what implies that $b_{1}=b_{2}$ because g is an injection. Therefore, \tilde{g} is an injection. For any $k \in\{n+1, n+2, \ldots, n+m\}$ we have $(k-n) \in\{1,2, \ldots, m\}$. Then, $\tilde{g}\left(g^{-1}(k-n)\right)=n+g\left(g^{-1}(k-n)\right)=n+k-n=k$ where $g^{-1}:\{1,2, \ldots m\} \rightarrow B$ is the inverse of g which exists because g is a bijection. Therefore, \tilde{g} is a surjection.
Define $h: A \cup B \rightarrow\{1,2, \ldots, n, n+1, n+2 \ldots, n+m\}$ as

$$
h(x)= \begin{cases}f(x) & \text { if } x \in A \\ \tilde{g}(x) & \text { if } x \in B\end{cases}
$$

Notice that by definition h is a function because $A \cap B=\emptyset$, so we assigned only one value for each $x \in A \cup B$. Moreover, $\operatorname{Im}(h)=\operatorname{Im}(f) \cup \operatorname{Im}(\tilde{g})=\{1,2, \ldots, n, n+1, n+2 \ldots, n+m\}$ because f and \tilde{g} are surjective on A and B, respectively. Therefore, h is surjective. Also, $\operatorname{Im}(f) \cap \operatorname{Im}(\tilde{g})=\emptyset$ by the definition, f and \tilde{g} are injective, so h is injective. Thus, h is a bijection because h is injective and surjective. Therefore, $A \cup B$ has $n+m$ elements.
6. Proof. We prove by contradiction. Assume $A \backslash\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ is finite, then there exist $m \in$ $\mathbb{N} \cup\{0\}$ and a bijection $f: A \backslash\left\{a_{1}, a_{2}, \ldots, a_{n}\right\} \rightarrow\{1,2, \ldots, m\}$.
Define a function $g:\left\{a_{1}, a_{2}, \ldots, a_{n}\right\} \rightarrow\{m+1, m+2, \ldots, m+n\}$ as $g\left(a_{k}\right)=m+k$ for $k \in\{1,2, \ldots, n\}$. Since $a_{i} \neq a_{j}$ if $i \neq j$, we have a well-defined function. Moreover, g is
surjective because for any $l \in\{m+1, m+2, \ldots, m+n\}$ we have $(l-m) \in\{1,2, \ldots, n\}$ and $g\left(a_{l-m}\right)=m+l-m=l$. Also, it is injective because if $a_{i}, a_{j} \in\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and $g\left(a_{i}\right)=g\left(a_{j}\right)$ then $m+i=m+j$,so $i=j$, so $a_{i}=a_{j}$. Thus, g is a bijection.
Notice that $A=\left(A \backslash\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}\right) \cup\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$. Define $h: A \rightarrow\{1,2, \ldots, m, m+1, m+$ $2, \ldots, m+n\}$ in the following way:

$$
h(x)=\left\{\begin{array}{lr}
f(x) & \text { if } x \in A \backslash\left\{a_{1}, a_{2}, \ldots, a_{n}\right\} \\
\tilde{g}(x) & \text { if } x \in\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}
\end{array}\right.
$$

Notice that by definition h is a function because $\left(A \backslash\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}\right) \cap\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}=$ \emptyset, so we assigned only one value for each $x \in A$. Moreover, $\operatorname{Im}(h)=\operatorname{Im}(f) \cup \operatorname{Im}(g)=$ $\{1,2, \ldots, m, m+1, m+2 \ldots, m+n\}$ because f and g are surjective on $A \backslash\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$, respectively. Therefore, h is surjective. Also, $\operatorname{Im}(f) \cap \operatorname{Im}(g)=\emptyset$ by the definition, f and g are injective, so h is injective. Thus, h is a bijection because h is injective and surjective. Therefore, A has $n+m$ elements, so A is finite. Since A is infinite, we obtained a contradiction. Therefore, $A \backslash\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ is an infinite set.

