Homework 10

MAT 200, Instructor: Alena Erchenko

- 1. Let A and B be non-empty sets. Consider a projection function $\pi_A : A \times B \to A$ defined by $\pi_A(a,b) = a$ for all $(a,b) \in A \times B$.
 - (a) Prove that π_A is a surjection.
 - (b) Is π_A injective? (Hint: The answer depends on how many elements B has.)
- 2. Let X, Y be non-empty sets. Let $f: X \to Y$ be a function. Show that f is surjective if and only if there is a function $g: Y \to X$ such that $f \circ g = id_Y$.
- 3. Let X, Y be non-empty sets. Let $f: X \to Y$ be a function. Show that f is injective if and only if there is a function $g: Y \to X$ such that $g \circ f = id_X$.
- 4. Find the inverse for the function $f \colon \mathbb{R} \to \mathbb{R}$ defined by $f(x) = (x-1)^3$ for all $x \in \mathbb{R}$. Explain your answer.
- 5. Let $n, m \in \mathbb{N}$. Let A be a set with n elements and B be a set with m elements. Show that if $A \cap B = \emptyset$, then $A \cup B$ has n + m elements.

<u>Hint</u>: Remember that by definition a set X has n elements if X has the same cardinality as $\{1, 2, ..., n\}$. Therefore, to prove the above result you need to construct a bijection between $A \cup B$ and $\{1, 2, ..., n + m\}$.

6. Let A be an infinite set. Let $n \in \mathbb{N}$ and $a_1, a_2, \ldots, a_n \in A$ such that $a_i \neq a_j$ if $i \neq j$. Prove that $A \setminus \{a_1, a_2, \ldots, a_n\}$ is an infinite set.