Homework 11 - Solutions

MAT 200, Instructor: Alena Erchenko

1. (a) Proof. We need to assign only one value from $\{1,2, \ldots, n\}$ to each element of $\{1,2, \ldots, m\}$. The set $\{1,2, \ldots, m\}$ has m elements, for each element there exist n options of what to assign. Thus, there are n^{m} distinct functions from $\{1,2, \ldots, m\}$ to $\{1,2, \ldots, n\}$.
(b) Proof. If $n<m$, then there are no injective functions from $\{1,2, \ldots, m\}$ to $\{1,2, \ldots, n\}$ because $\{1,2, \ldots, m\}$ has m elements and to obtain injective function we need to assign different values to different elements of $\{1,2, \ldots, m\}$, so we need to have at least m different elements in $\{1,2, \ldots, n\}$ which has only n elements.
If $n \geq m$, then there are $n(n-1) \cdot \ldots \cdot(n-m+1)=\frac{n!}{(n-m)!}$ distinct injective functions from $\{1,2, \ldots, m\}$ to $\{1,2, \ldots, n\}$. The set $\{1,2, \ldots, m\}$ has m elements. Let's first assign value of a function to 1 , we have n options. Then, we assign value of the function to 2 , which can be any element in $\{1,2, \ldots, n\}$ except the element that was assigned to 1 because we want an injective function, so we have $n-1$ options. Then, we assign value of the function to 3 , which can be any element in $\{1,2, \ldots, n\}$ except the elements that were assigned to 1 and 2 because we want an injective function, so we have $n-2$ options. And so on.
2. First, notice that $A \cup B=(A \backslash B) \cup(B \backslash A) \cup(A \cap B)$ because $x \in A \cup B \Leftrightarrow x \in A$ or $x \in B \Leftrightarrow(x \in A$ and $x \notin B)$ or $(x \notin A$ and $x \in B)$ or $(x \in A$ and $x \in B) \Leftrightarrow x \in A \backslash B$ or $x \in B \backslash A$ or $x \in A \cap B \Leftrightarrow x \in(A \backslash B) \cup(B \backslash A) \cup(A \cap B)$. Moreover, $A \backslash B) \cap(B \backslash A)=\emptyset$, $(A \backslash B) \cap(A \cap B)=\emptyset$, and $(B \backslash A) \cap(A \cap B)=\emptyset$. In particular, $(A \backslash B) \cap(B \backslash A)) \cap(A \cap B)=\emptyset$. Moreover, $A \backslash B \subset A, B \backslash A \subset B$, and $A \cap B \subset A$, thus, $A \backslash B, B \backslash A$, and $A \cap B$ are finite since A and B are finite. Using Problem 5 in Homework 10 twice, we obtain

$$
\begin{aligned}
|A \cup B| & =|(A \backslash B) \cup(B \backslash A) \cup(A \cap B)| \\
& =|(A \backslash B) \cup(B \backslash A)|+|A \cap B| \\
& =|A \backslash B|+|B \backslash A|+|A \cap B| .
\end{aligned}
$$

Also, $A=(A \backslash B) \cup(A \cap B)$ because $x \in A \Leftrightarrow(x \in A$ and $x \notin B)$ or $(x \in A$ and $x \in B) \Leftrightarrow$ $x \in(A \backslash B)$ or $x \in(A \cap B) \Leftrightarrow x \in(A \backslash B) \cup(A \cap B)$. Notice that $(A \backslash B) \cap(A \cap B)=\emptyset$. Applying Problem 5 in Homework 10, we obtain

$$
|A|=|(A \backslash B) \cup(A \cap B)|=|A \backslash B|+|A \cap B|
$$

so

$$
|A \backslash B|=|A|-|A \cap B|
$$

Similarly,

$$
|B \backslash A|=|B|-|A \cap B|
$$

Combining all equalities together, we obtain

$$
\begin{aligned}
|A \cup B| & =|A \backslash B|+|B \backslash A|+|A \cap B| \\
& =|A|-|A \cap B|+|B|-|A \cap B|+|A \cap B| \\
& =|A|+|B|-|A \cap B|
\end{aligned}
$$

3. Proof. We showed in class that there exists a bijection $f: \mathbb{Z} \rightarrow \mathbb{N}$. Let $g: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{N} \times \mathbb{N}$ be defined as $g(a, b)=(f(a), f(b))$ for any $a, b \in \mathbb{Z}$. We show that g is a bijection. Assume $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right) \in \mathbb{Z} \times \mathbb{Z}$ such that $g\left(a_{1}, b_{1}\right)=g\left(a_{2}, b_{2}\right)$. Then, $\left(f\left(a_{1}\right), f\left(b_{1}\right)\right)=\left(f\left(a_{2}\right), f\left(b_{2}\right)\right)$, so $f\left(a_{1}\right)=f\left(a_{2}\right)$ and $f\left(b_{1}\right)=f\left(b_{2}\right)$. Therefore, $a_{1}=a_{2}$ and $b_{1}=b_{2}$ because f is a bijection (in particular, injection), so $\left(a_{1}, b_{1}\right)=\left(a_{2}, b_{2}\right)$. Thus, g is an injection. For any $(n, m) \in \mathbb{N} \times \mathbb{N}$ we have $\left(f^{-1}(n), f^{-1}(m)\right) \in \mathbb{Z} \times \mathbb{Z}$ where f^{-1} is the inverse of f which exists because f is a bijection. Then, $g\left(\left(f^{-1}(n), f^{-1}(m)\right)\right)=\left(f\left(f^{-1}(n)\right), f\left(f^{-1}(m)\right)\right)=(n, m)$. Thus, g is a surjection. Therefore, g is a bijection because it is a surjection and an injection.
Also, in class we showed that there exists a bijection $h: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$. As a result, by theorem in class about composition of bijections, we have that $h \circ g: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{N}$ is a bijection, so $|\mathbb{Z} \times \mathbb{Z}|=|\mathbb{N}|$. Therefore, $\mathbb{Z} \times \mathbb{Z}$ is countable.
4. Proof. Let a be a repeating decimal. Then, $a=0 . y_{1} y_{2} \ldots y_{n} \overline{x_{1} x_{2} \ldots x_{k}}$ where
$y_{1}, y_{2}, \ldots, y_{n}, x_{1}, x_{2}, \ldots, x_{k} \in\{0,1,2, \ldots, 9\}, n \in \mathbb{N} \cup\{0\}$, and $k \in \mathbb{N}$. We have

$$
a \cdot 10^{n}=y_{1} y_{2} \ldots y_{n} \cdot \overline{x_{1} x_{2} \ldots x_{k}}
$$

and

$$
a \cdot 10^{n+k}=y_{1} y_{2} \ldots y_{n} x_{1} x_{2} \ldots x_{k} \cdot \overline{x_{1} x_{2} \ldots x_{k}}
$$

Then,

$$
a\left(10^{n+k}-10^{n}\right)=a \cdot 10^{n+k}-a \cdot 10^{n}=y_{1} y_{2} \ldots y_{n} x_{1} x_{2} \ldots x_{k}-y_{1} y_{2} \ldots y_{n} .
$$

Since $\left(y_{1} y_{2} \ldots y_{n} x_{1} x_{2} \ldots x_{k}-y_{1} y_{2} \ldots y_{n}\right) \in \mathbb{Z}$ and $\left(10^{n+k}-10^{n}\right)=10^{n}\left(10^{k}-1\right) \in \mathbb{N}$ because $k \in \mathbb{N}$ and $n \in \mathbb{N} \cup\{0\}$, we have that $a=\frac{y_{1} y_{2} \ldots y_{n} x_{1} x_{2} \ldots x_{k}-y_{1} y_{2} \ldots y_{n}}{10^{n+k}-10^{n}}$ is a rational number.
5. Proof. If $x \in A$, then $\{x\} \in \mathcal{P}(A)$. Define $h: A \rightarrow \mathcal{P}(A)$ by setting $h(x)=\{x\}$. Then, h is a well-defined function as to each element of A we prescribed only one element of $\mathcal{P}(A)$.
Assume $x, y \in A$ such that $h(x)=h(y)$. Then, $\{x\}=\{y\}$, so $x \in\{y\}$ what implies $x=y$. Therefore, h is an injection.
Since $h: A \rightarrow \mathcal{P}(A)$ is an injection, we have that $|A| \leq|\mathcal{P}(A)|$.
6. Proof. A polynomial in x of degree $n \in \mathbb{N}$ with rational coefficients has form $a_{0} x^{n}+a_{1} x^{n-1}+$ $a_{2} x^{n-2}+\ldots+a_{n-1} x+a_{n}$ where $a_{0} \in \mathbb{Q} \backslash\{0\}$ and $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{Q}$. Moreover, two polynomials in x are the same if and only if they have the same coefficients. Thus, we can code each polynomial in x of degree $n \in \mathbb{N}$ with rational coefficients by a sequence ($a_{0}, a_{1}, a_{2}, \ldots, a_{n-1}, a_{n}$) where $a_{0} \in \mathbb{Q} \backslash\{0\}$ and $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{Q}$. Thus, the problem can be formulated to show that the set $P_{n}=\left\{\left(a_{0}, a_{1}, a_{2}, \ldots, a_{n-1}, a_{n}\right) \mid a_{0} \in \mathbb{Q} \backslash\{0\}, a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{Q}\right\}$ is countable for all $n \in \mathbb{N}$.
We prove the statement by induction on n.

Base case: Let $n=1$. Then, $P_{n}=P_{1}=\left\{\left(a_{0}, a_{1}\right) \mid a_{0} \in \mathbb{Q} \backslash\{0\}, a_{1} \in \mathbb{Q}\right\}=(\mathbb{Q} \backslash\{0\}) \times \mathbb{Q}$. Recall by the example in class, we showed that \mathbb{Q} is countable, so there exists a bijection $f: \mathbb{Q} \rightarrow \mathbb{N}$. Also, by the fact that we should in class, $\mathbb{Q} \backslash\{0\}$ is countable because it is infinite (by Problem 6 in Homework 10 as \mathbb{Q} is infinite) and a subset of a countable set (as $\mathbb{Q} \backslash\{0\} \subset \mathbb{Q}$ and \mathbb{Q} is countable). Thus, there exists a bijection $g: \mathbb{Q} \backslash\{0\} \rightarrow \mathbb{N}$.
Let $h:(\mathbb{Q} \backslash\{0\}) \times \mathbb{Q} \rightarrow \mathbb{N} \times \mathbb{N}$ be defined by $h(x, y)=(g(x), f(y))$ for all $(x, y) \in(\mathbb{Q} \backslash\{0\}) \times \mathbb{Q}$. Consider a function $y: \mathbb{N} \times \mathbb{N} \rightarrow(\mathbb{Q} \backslash\{0\} \times \mathbb{Q})$ defined by $y(n, m)=\left(g^{-1}(n), f^{-1}(m)\right)$. Then, y is the inverse of h because $y(h(x, y))=y(g(x), f(y))=\left(g^{-1}(g(x)), f^{-1}(f(y))\right)=(x, y)$ for all $(x, y) \in(\mathbb{Q} \backslash\{0\}) \times \mathbb{Q}$ and $h(y(n, m))=h\left(g^{-1}(n), f^{-1}(m)\right)=\left(g\left(g^{-1}(n)\right), f\left(f^{-1}(m)\right)\right)=(n, m)$ for all $(n, m) \in \mathbb{N} \times \mathbb{N}$. Thus, h is a bijection so $|(\mathbb{Q} \backslash\{0\} \times \mathbb{Q})|=|\mathbb{N} \times \mathbb{N}|$. Using the fact that $\mathbb{N} \times \mathbb{N}$ is countable and the composition of bijections is a bijection, we obtain $(\mathbb{Q} \backslash\{0\} \times \mathbb{Q})$ is countable so P_{1} is countable.
Inductive step: Assume for some $k \in \mathbb{N}$ we have that P_{k} is countable. We want to show that $\overline{P_{k+1}}$ is countable. Define a function $f_{1}: P_{k+1} \rightarrow P_{k} \times \mathbb{Q}$ defined by

$$
f_{1}\left(\left(a_{0}, a_{1}, \ldots, a_{k}, a_{k+1}\right)\right)=\left(\left(a_{0}, a_{1}, \ldots, a_{k}\right), a_{k+1}\right)
$$

for all $\left(a_{0}, a_{1}, \ldots, a_{k}, a_{k+1}\right) \in P_{k+1}$. We have that f_{1} is a bijection because it has an inverse $g_{1}: P_{k} \times \mathbb{Q} \rightarrow P_{k+1}$ defined by $g_{1}\left(\left(\left(b_{0}, b_{1}, \ldots, b_{k}\right), b\right)\right)=\left(b_{0}, b_{1}, b_{2}, \ldots, b_{k}, b\right)$. Therefore,

$$
\left|P_{k+1}\right|=\left|P_{k} \times \mathbb{Q}\right| .
$$

Since P_{k} is countable, there exists a bijection $f_{2}: P_{k} \rightarrow \mathbb{N}$. Let $f: \mathbb{Q} \rightarrow \mathbb{N}$ be a bijection which exists because \mathbb{Q} is countable. Then, $h_{1}: P_{k} \times \mathbb{Q} \rightarrow \mathbb{N} \times \mathbb{N}$ defined by $h_{1}\left(\left(\left(b_{0}, b_{1}, \ldots, b_{k}\right), b\right)\right)=$ $\left(f_{2}\left(\left(b_{0}, b_{1}, \ldots, b_{k}\right)\right), f(b)\right)$ for all $\left(\left(b_{0}, b_{1}, \ldots, b_{k}\right), b\right) \in P_{k} \times \mathbb{Q}$ is a bijection (the proof is similar as in the base case). Thus, $\left|P_{k} \times \mathbb{Q}\right|=|\mathbb{N} \times \mathbb{N}|$. Using the fact that composition of bijections is a bijection and $|\mathbb{N} \times \mathbb{N}|=|\mathbb{N}|$, we obtain $\left|P_{k+1}\right|=|\mathbb{N}|$ so P_{k+1} is countable.
As a result, by the principle of mathematical induction, P_{n} is countable for all $n \in \mathbb{N}$ so the set of polynomials in x of degree n with rational coefficients is countable.
7. Proof. By Problem 5, we have that $|\mathbb{N}| \leq|\mathcal{P}(\mathbb{N})|$, so $\mathcal{P}(\mathbb{N})$ is infinite. Therefore, we need to show that $\mathcal{P}(\mathbb{N})$ is not countable. We prove that statement by contradiction. Assume $\mathcal{P}(\mathbb{N})$ is countable, then there exists a bijection $f: \mathbb{N} \rightarrow \mathcal{P}(\mathbb{N})$. We assign to each $A \in \mathcal{P}(\mathbb{N})$ an infinite sequence $\left(y_{1}, y_{2}, y_{3}, \ldots\right)$, where $y_{i}=1$ if $i \in A$ and $y_{i}=0$ if $i \notin A$. Notice that different subsets of \mathbb{N} have different sequences because if $A, B \in \mathcal{P}(\mathbb{N})$ and $A \neq B$, then there exists $k \in \mathbb{N}$ such that $[k \in A$ and $k \notin B]$ or $[k \notin A$ and $k \in B]$, so k-th element of the sequence for A is different from the k-th element of the sequence for B. Moreover, any sequence (x_{1}, x_{2}, \ldots) where $x_{i} \in\{0,1\}$ for all $i \in \mathbb{N}$ corresponds to a set $A=\left\{i \in \mathbb{N} \mid x_{i}=1\right\}$, so $A \in \mathcal{P}(\mathbb{N})$.
For any $n \in \mathbb{N}$, we have $f(n) \in \mathcal{P}(\mathbb{N})$, so there exists a sequence ($y_{1}^{n}, y_{2}^{n}, \ldots$) coding $f(n)$. Consider a sequence $\left(x_{1}, x_{2}, \ldots\right)$ where $x_{i}=1$ if $y_{i}^{i}=0$ and $x_{i}=0$ if $y_{i}^{i}=1$ for all $i \in \mathbb{N}$. Let $A=\left\{i \in \mathbb{N} \mid x_{i}=1\right\}$. Then, for any $n \in \mathbb{N}$ we have that $f(n) \neq A$ because the sequences are not equal. So, $A \in \mathcal{P}(\mathbb{N})$ and $A \notin \operatorname{Im}(f)$. Therefore, f is not surjective, so f is not bijective. We obtained a contradiction. Therefore, $\mathcal{P}(\mathbb{N})$ is not countable.
Thus, $\mathcal{P}(\mathbb{N})$ is uncountable.

