Homework 11 - Solutions

MAT 200, Instructor: Alena Erchenko

1. (a) Proof. We need to assign only one value from {1,2,...,n} to each element of {1,2,...,m}.
The set {1,2,...,m} has m elements, for each element there exist n options of what to
assign. Thus, there are n™ distinct functions from {1,2,...,m} to {1,2,...,n}. ]

(b) Proof. If n < m, then there are no injective functions from {1,2,...,m} to {1,2,...,n}
because {1,2,...,m} has m elements and to obtain injective function we need to assign
different values to different elements of {1,2, ..., m}, so we need to have at least m different
elements in {1,2,...,n} which has only n elements.

If n > m, then there are n(n—1)-...-(n—m+1) = (nf—;n), distinct injective functions from

{1,2,...,m}to{1,2,...,n}. Theset {1,2,...,m} has m elements. Let’s first assign value
of a function to 1, we have n options. Then, we assign value of the function to 2, which

can be any element in {1,2,...,n} except the element that was assigned to 1 because we
want an injective function, so we have n — 1 options. Then, we assign value of the function
to 3, which can be any element in {1,2,...,n} except the elements that were assigned to

1 and 2 because we want an injective function, so we have n — 2 options. And so on. [

2. First, notice that AUB = (A\ B)U(B\ A)U (AN B) because x € AUB < = € A or
reEBe (rcAandaegB)or (e gAandorx e B)or (r € Aandx € B) & x € A\ B or
re€B\Aorze ANB<xe (A\B)U(B\A)U(ANB). Moreover, A\ B)N (B\ A) =0,
(A\B)N(ANB) =0, and (B\ A)N(ANDB) = . In particular, (A\ B) N (B\ A))N(ANB) = (.
Moreover, A\ B C A, B\ AC B,and ANB C A, thus, A\ B, B\ A, and AN B are finite

since A and B are finite. Using Problem 5 in Homework 10 twice, we obtain
|[AUB|=[(A\B)U(B\ A)U(ANB)|

=[(A\B)U(B\ A)[+[AN B]
=|A\ B|+|B\ 4| +|ANB|.

Also, A= (A\B)U(ANB) because x € A< (r€ Aande ¢ B)or (r € Aand x € B) &
re€(A\B)orz e (ANB) & z € (A\ B)U (AN B). Notice that (A\ B)N (AN B) = 0.
Applying Problem 5 in Homework 10, we obtain

(Al =[(A\B)U (AN B)| = |A\ Bl +[AN B,

SO
[AN\ B| = [A] = [AN BJ.

Similarly,
|B\ Al = |B| = |AN B].



Combining all equalities together, we obtain

|JAUB|=|A\ B|+ |B\ Al +|AN B
=|A|—|ANB|+|B| - |ANB|+|AN B|
=|A|+|B| - |AN Bj.

. Proof. We showed in class that there exists a bijection f: Z — N. Let g: Z x Z — N x N
be defined as g(a,b) = (f(a), f(b)) for any a,b € Z. We show that g is a bijection. Assume
(a1,b1), (a2, b2) € Z x Z such that g(ay,b1) = g(az, b2). Then, (f(a1), f(b1)) = (f(az2), f(b2)), so
f(a1) = f(az) and f(by) = f(by). Therefore, a; = ay and b; = by because f is a bijection (in
particular, injection), so (ai,b;) = (ag,bs). Thus, g is an injection. For any (n,m) € N x N
we have (f~'(n), f~'(m)) € Z x Z where f~! is the inverse of f which exists because f is
a bijection. Then, g((f~'(n), f~'(m))) = (f(f7'(n)), f(f~(m))) = (n,m). Thus, g is a
surjection. Therefore, ¢ is a bijection because it is a surjection and an injection.

Also, in class we showed that there exists a bijection A: N x N — N. As a result, by theorem
in class about composition of bijections, we have that h o g: Z x Z — N is a bijection, so
|Z x Z| = |N|. Therefore, Z x Z is countable. O

. Proof. Let a be a repeating decimal. Then, a = 0.11ys ... y,T172 ... T Where
YL, Y2y -+ s Yny T1, T2, -, T € {0,1,2,...,9}, n € NU{0}, and k£ € N. We have

a-10" =1y ... Yn-T1x2 - - - Tk,
and
a- 10" = Y1Y2 - - - YnT1Xo . . . Tp. T Lo - - - Tk
Then,
a(10"F —10") = a - 10"* — - 10" = y19o . . . YpZ1T2 - . Tk — Y1Y2 - - - Yn-
Since (Y192 - - - YnT1T2 - .. T — Y1Y2 - - - Yn) € Z and (10"T* — 10") = 10"(10* — 1) € N because

k € Nand n € NU {0}, we have that q = ##2=nrein2eiiizn jg g rational number. O

. Proof. If x € A, then {2} € P(A). Define h: A — P(A) by setting h(x) = {z}. Then, his a
well-defined function as to each element of A we prescribed only one element of P(A).

Assume z,y € A such that h(z) = h(y). Then, {z} = {y}, so z € {y} what implies z = y.
Therefore, h is an injection.

Since h: A — P(A) is an injection, we have that |A| < |P(A)]. O

. Proof. A polynomial in x of degree n € N with rational coefficients has form agz™ + a;2" ! +
A" % +. ..+ an_17+a, where ay € Q\ {0} and ay, as, ..., a, € Q. Moreover, two polynomials
in x are the same if and only if they have the same coefficients. Thus, we can code each
polynomial in = of degree n € N with rational coefficients by a sequence (ag, ai, as, ..., a1, ay)
where ag € Q\ {0} and ay,aq, ..., a, € Q. Thus, the problem can be formulated to show that
the set P, = {(ap,a1,a9,...,a,_1,a,)lag € Q\ {0},a1,as,...,a, € Q} is countable for all
n € N.

We prove the statement by induction on n.



Base case: Let n = 1. Then, P, = P, = {(ag,a1)|ao € Q\ {0},a1 € Q} = (Q\ {0}) x Q. Recall
by the example in class, we showed that Q is countable, so there exists a bijection f: Q — N.
Also, by the fact that we should in class, Q\ {0} is countable because it is infinite (by Problem
6 in Homework 10 as Q is infinite) and a subset of a countable set (as Q \ {0} C Q and Q is
countable). Thus, there exists a bijection g: Q \ {0} — N.

Let : (Q)\{0}) x@ = NxNbe defined by iz, y) = (g(x), £(y)) for all (z, y) € (Q\{0}) x Q.
Consider a function y: N x N — (Q\ {0} x Q) defined by y(n,m) = (¢~ (n), f~*(m)). Then,
y i the iverse of h because y(1(z.)) = y(9(2). S(9)) = (9 (9(x)). S~ ((9))) = () for al
(5,9) € @\ {0}) x @ and A(y(n, m)) = h(g™'(n), £ (m)) = (glg~ (), F(F~ () = (n, m)
for all (n,m) € N x N. Thus, h is a bijection so ](Q\ {0} x Q)| = N x N|. Using the fact that
N x N is countable and the composition of bijections is a bijection, we obtain (Q \ {0} x Q) is
countable so P, is countable.

Inductive step: Assume for some k£ € N we have that P is countable. We want to show that
P14 is countable. Define a function f;: Py — Pr x Q defined by

fl((a[b Ay, ..., 0k, ak—l—l)) - ((CLO) Ay, ... aak); ak+1) .

for all (ag,ay,...,ak,axr1) € Prr1. We have that f; is a bijection because it has an inverse

gy: Pk X Q — Pk+1 defined by g1(((b0, bl, RN bk), b)) = (b(), bl, bQ, R ,bk, b) Therefore,
| Peta| = [Pr x Q).

Since Py is countable, there exists a bijection fo: P, — N. Let f: Q — N be a bijection which
exists because Q is countable. Then, hy: P, x Q — N x N defined by hy(((bo, b1,...,bk),b)) =
(f2((bg, by, ..., bg)), f(b)) for all ((by,b1,...,br),b) € P, x Q is a bijection (the proof is similar
as in the base case). Thus, |P, x Q| = [N x NJ|. Using the fact that composition of bijections
is a bijection and |N x N| = |N|, we obtain |Py;1| = |N| so P41 is countable.

As a result, by the principle of mathematical induction, P, is countable for all n € N so the set
of polynomials in x of degree n with rational coefficients is countable. O

. Proof. By Problem 5, we have that |N| < |P(N)|, so P(N) is infinite. Therefore, we need to
show that P(N) is not countable. We prove that statement by contradiction. Assume P(N) is
countable, then there exists a bijection f: N — P(N). We assign to each A € P(N) an infinite
sequence (y1,Ys2,Ys,...), where y; = 1 if i € Aand y; = 0if ¢ ¢ A. Notice that different subsets
of N have different sequences because if A, B € P(N) and A # B, then there exists k € N
such that [k € Aand k € Bl or [k ¢ A and k € B], so k-th element of the sequence for A
is different from the k-th element of the sequence for B. Moreover, any sequence (z1, s, .. .)
where x; € {0,1} for all ¢ € N corresponds to a set A = {i € N|z; = 1}, so A € P(N).

For any n € N, we have f(n) € P(N), so there exists a sequence (y7,y5,...) coding f(n).
Consider a sequence (1, Ts,...) where z; = 1 if y! = 0 and z; = 0 if y! = 1 for all i € N. Let
A = {i € N|z; = 1}. Then, for any n € N we have that f(n) # A because the sequences are
not equal. So, A € P(N) and A &€ Im(f). Therefore, f is not surjective, so f is not bijective.
We obtained a contradiction. Therefore, P(N) is not countable.

Thus, P(N) is uncountable. O



