
Homework 11 - Solutions

MAT 200, Instructor: Alena Erchenko

1. (a) Proof. We need to assign only one value from {1, 2, . . . , n} to each element of {1, 2, . . . ,m}.
The set {1, 2, . . . ,m} has m elements, for each element there exist n options of what to
assign. Thus, there are nm distinct functions from {1, 2, . . . ,m} to {1, 2, . . . , n}.

(b) Proof. If n < m, then there are no injective functions from {1, 2, . . . ,m} to {1, 2, . . . , n}
because {1, 2, . . . ,m} has m elements and to obtain injective function we need to assign
different values to different elements of {1, 2, . . . ,m}, so we need to have at least m different
elements in {1, 2, . . . , n} which has only n elements.

If n ≥ m, then there are n(n−1) · . . . ·(n−m+1) = n!
(n−m)!

distinct injective functions from

{1, 2, . . . ,m} to {1, 2, . . . , n}. The set {1, 2, . . . ,m} has m elements. Let’s first assign value
of a function to 1, we have n options. Then, we assign value of the function to 2, which
can be any element in {1, 2, . . . , n} except the element that was assigned to 1 because we
want an injective function, so we have n−1 options. Then, we assign value of the function
to 3, which can be any element in {1, 2, . . . , n} except the elements that were assigned to
1 and 2 because we want an injective function, so we have n− 2 options. And so on.

2. First, notice that A ∪ B = (A \ B) ∪ (B \ A) ∪ (A ∩ B) because x ∈ A ∪ B ⇔ x ∈ A or
x ∈ B ⇔ (x ∈ A and x 6∈ B) or (x 6∈ A and x ∈ B) or (x ∈ A and x ∈ B) ⇔ x ∈ A \ B or
x ∈ B \ A or x ∈ A ∩B ⇔ x ∈ (A \B) ∪ (B \ A) ∪ (A ∩B). Moreover, A \B) ∩ (B \ A) = ∅,
(A\B)∩(A∩B) = ∅, and (B\A)∩(A∩B) = ∅. In particular, (A \B) ∩ (B \ A))∩(A∩B) = ∅.
Moreover, A \ B ⊂ A, B \ A ⊂ B, and A ∩ B ⊂ A, thus, A \ B, B \ A, and A ∩ B are finite
since A and B are finite. Using Problem 5 in Homework 10 twice, we obtain

|A ∪B| = |(A \B) ∪ (B \ A) ∪ (A ∩B)|
= |(A \B) ∪ (B \ A)|+ |A ∩B|
= |A \B|+ |B \ A|+ |A ∩B|.

Also, A = (A \ B) ∪ (A ∩ B) because x ∈ A ⇔ (x ∈ A and x 6∈ B) or (x ∈ A and x ∈ B) ⇔
x ∈ (A \ B) or x ∈ (A ∩ B) ⇔ x ∈ (A \ B) ∪ (A ∩ B). Notice that (A \ B) ∩ (A ∩ B) = ∅.
Applying Problem 5 in Homework 10, we obtain

|A| = |(A \B) ∪ (A ∩B)| = |A \B|+ |A ∩B|,

so
|A \B| = |A| − |A ∩B|.

Similarly,
|B \ A| = |B| − |A ∩B|.



Combining all equalities together, we obtain

|A ∪B| = |A \B|+ |B \ A|+ |A ∩B|
= |A| − |A ∩B|+ |B| − |A ∩B|+ |A ∩B|
= |A|+ |B| − |A ∩B|.

3. Proof. We showed in class that there exists a bijection f : Z → N. Let g : Z × Z → N × N
be defined as g(a, b) = (f(a), f(b)) for any a, b ∈ Z. We show that g is a bijection. Assume
(a1, b1), (a2, b2) ∈ Z×Z such that g(a1, b1) = g(a2, b2). Then, (f(a1), f(b1)) = (f(a2), f(b2)), so
f(a1) = f(a2) and f(b1) = f(b2). Therefore, a1 = a2 and b1 = b2 because f is a bijection (in
particular, injection), so (a1, b1) = (a2, b2). Thus, g is an injection. For any (n,m) ∈ N × N
we have (f−1(n), f−1(m)) ∈ Z × Z where f−1 is the inverse of f which exists because f is
a bijection. Then, g((f−1(n), f−1(m))) = (f(f−1(n)), f(f−1(m))) = (n,m). Thus, g is a
surjection. Therefore, g is a bijection because it is a surjection and an injection.

Also, in class we showed that there exists a bijection h : N × N → N. As a result, by theorem
in class about composition of bijections, we have that h ◦ g : Z × Z → N is a bijection, so
|Z× Z| = |N|. Therefore, Z× Z is countable.

4. Proof. Let a be a repeating decimal. Then, a = 0.y1y2 . . . ynx1x2 . . . xk where
y1, y2, . . . , yn, x1, x2, . . . , xk ∈ {0, 1, 2, . . . , 9}, n ∈ N ∪ {0}, and k ∈ N. We have

a · 10n = y1y2 . . . yn.x1x2 . . . xk

and
a · 10n+k = y1y2 . . . ynx1x2 . . . xk.x1x2 . . . xk.

Then,
a(10n+k − 10n) = a · 10n+k − a · 10n = y1y2 . . . ynx1x2 . . . xk − y1y2 . . . yn.

Since (y1y2 . . . ynx1x2 . . . xk − y1y2 . . . yn) ∈ Z and (10n+k − 10n) = 10n(10k − 1) ∈ N because
k ∈ N and n ∈ N ∪ {0}, we have that a = y1y2...ynx1x2...xk−y1y2...yn

10n+k−10n
is a rational number.

5. Proof. If x ∈ A, then {x} ∈ P(A). Define h : A → P(A) by setting h(x) = {x}. Then, h is a
well-defined function as to each element of A we prescribed only one element of P(A).

Assume x, y ∈ A such that h(x) = h(y). Then, {x} = {y}, so x ∈ {y} what implies x = y.
Therefore, h is an injection.

Since h : A→ P(A) is an injection, we have that |A| ≤ |P(A)|.

6. Proof. A polynomial in x of degree n ∈ N with rational coefficients has form a0x
n + a1x

n−1 +
a2x

n−2 + . . .+an−1x+an where a0 ∈ Q\{0} and a1, a2, . . . , an ∈ Q. Moreover, two polynomials
in x are the same if and only if they have the same coefficients. Thus, we can code each
polynomial in x of degree n ∈ N with rational coefficients by a sequence (a0, a1, a2, . . . , an−1, an)
where a0 ∈ Q \ {0} and a1, a2, . . . , an ∈ Q. Thus, the problem can be formulated to show that
the set Pn = {(a0, a1, a2, . . . , an−1, an)|a0 ∈ Q \ {0}, a1, a2, . . . , an ∈ Q} is countable for all
n ∈ N.

We prove the statement by induction on n.



Base case: Let n = 1. Then, Pn = P1 = {(a0, a1)|a0 ∈ Q \ {0}, a1 ∈ Q} = (Q \ {0})×Q. Recall
by the example in class, we showed that Q is countable, so there exists a bijection f : Q→ N.
Also, by the fact that we should in class, Q \{0} is countable because it is infinite (by Problem
6 in Homework 10 as Q is infinite) and a subset of a countable set (as Q \ {0} ⊂ Q and Q is
countable). Thus, there exists a bijection g : Q \ {0} → N.

Let h : (Q\{0})×Q→ N×N be defined by h(x, y) = (g(x), f(y)) for all (x, y) ∈ (Q\{0})×Q.
Consider a function y : N× N→ (Q \ {0} ×Q) defined by y(n,m) = (g−1(n), f−1(m)). Then,
y is the inverse of h because y(h(x, y)) = y(g(x), f(y)) = (g−1(g(x)), f−1(f(y))) = (x, y) for all
(x, y) ∈ (Q \ {0})×Q and h(y(n,m)) = h(g−1(n), f−1(m)) = (g(g−1(n)), f(f−1(m))) = (n,m)
for all (n,m) ∈ N×N. Thus, h is a bijection so |(Q \ {0} ×Q)| = |N×N|. Using the fact that
N×N is countable and the composition of bijections is a bijection, we obtain (Q \ {0} ×Q) is
countable so P1 is countable.

Inductive step: Assume for some k ∈ N we have that Pk is countable. We want to show that
Pk+1 is countable. Define a function f1 : Pk+1 → Pk ×Q defined by

f1((a0, a1, . . . , ak, ak+1)) = ((a0, a1, . . . , ak), ak+1) .

for all (a0, a1, . . . , ak, ak+1) ∈ Pk+1. We have that f1 is a bijection because it has an inverse
g1 : Pk ×Q→ Pk+1 defined by g1(((b0, b1, . . . , bk), b)) = (b0, b1, b2, . . . , bk, b). Therefore,

|Pk+1| = |Pk ×Q|.

Since Pk is countable, there exists a bijection f2 : Pk → N. Let f : Q→ N be a bijection which
exists because Q is countable. Then, h1 : Pk ×Q→ N× N defined by h1(((b0, b1, . . . , bk), b)) =
(f2((b0, b1, . . . , bk)), f(b)) for all ((b0, b1, . . . , bk), b) ∈ Pk × Q is a bijection (the proof is similar
as in the base case). Thus, |Pk × Q| = |N × N|. Using the fact that composition of bijections
is a bijection and |N× N| = |N|, we obtain |Pk+1| = |N| so Pk+1 is countable.

As a result, by the principle of mathematical induction, Pn is countable for all n ∈ N so the set
of polynomials in x of degree n with rational coefficients is countable.

7. Proof. By Problem 5, we have that |N| ≤ |P(N)|, so P(N) is infinite. Therefore, we need to
show that P(N) is not countable. We prove that statement by contradiction. Assume P(N) is
countable, then there exists a bijection f : N→ P(N). We assign to each A ∈ P(N) an infinite
sequence (y1, y2, y3, . . .), where yi = 1 if i ∈ A and yi = 0 if i 6∈ A. Notice that different subsets
of N have different sequences because if A,B ∈ P(N) and A 6= B, then there exists k ∈ N
such that [k ∈ A and k 6∈ B] or [k 6∈ A and k ∈ B], so k-th element of the sequence for A
is different from the k-th element of the sequence for B. Moreover, any sequence (x1, x2, . . .)
where xi ∈ {0, 1} for all i ∈ N corresponds to a set A = {i ∈ N|xi = 1}, so A ∈ P(N).

For any n ∈ N, we have f(n) ∈ P(N), so there exists a sequence (yn1 , y
n
2 , . . .) coding f(n).

Consider a sequence (x1, x2, . . .) where xi = 1 if yii = 0 and xi = 0 if yii = 1 for all i ∈ N. Let
A = {i ∈ N|xi = 1}. Then, for any n ∈ N we have that f(n) 6= A because the sequences are
not equal. So, A ∈ P(N) and A 6∈ Im(f). Therefore, f is not surjective, so f is not bijective.
We obtained a contradiction. Therefore, P(N) is not countable.

Thus, P(N) is uncountable.


