Homework 11

MAT 200, Instructor: Alena Erchenko

1. Let $n, m \in \mathbb{N}$.
(a) How many distinct functions from $\{1,2, \ldots, m\}$ to $\{1,2, \ldots, n\}$ are there? Explain your answer.
(b) How many distinct injective functions from $\{1,2, \ldots, m\}$ to $\{1,2, \ldots, n\}$ are there? Explain your answer.
2. Suppose that A and B are finite sets. Prove that $A \cup B$ is a finite set and $|A \cup B|=|A|+|B|-$ $|A \cap B|$. Hint: Show that $A \cup B=(A \backslash B) \cup(B \backslash A) \cup(A \cap B), A=(A \backslash B) \cup(A \cap B)$, and use Problem 5 in Homework 10.
3. Prove that $\mathbb{Z} \times \mathbb{Z}$ is countable.
4. Prove that a repeating decimal is a rational number.

Hint: Recall that a repeating decimal a can be written as $a=0 . y_{1} y_{2} \ldots y_{n} \overline{x_{1} x_{2} \ldots x_{k}}$ where $y_{1}, y_{2}, \ldots, y_{n}, x_{1}, x_{2}, \ldots, x_{k} \in\{0,1,2, \ldots, 9\}$ and $x_{1} x_{2} \ldots x_{k}$ is repeated indefinitely, $n \in \mathbb{N} \cup\{0\}$, and $k \in \mathbb{N}$.
5. Let A be a set. Let $\mathcal{P}(A)=\{C \mid C \subset A\}=\{$ all subsets of $A\}$. Show that $|A| \leq|\mathcal{P}(A)|$.
6. Let $n \in \mathbb{N}$. Prove that the number of polynomials in x of degree n with rational coefficients is countable.
7. Using the idea from the proof that \mathbb{R} is uncountable, show that $\mathcal{P}(\mathbb{N})$ is uncountable. Do not use Cantor's generalized diagonal lemma or its proof.
Hint: Think how to code subsets in terms of a sequence of zeros and ones.

