Homework 1

MAT 351, Instructor: Alena Erchenko

Everywhere below [HK] stands for the book "A First Course in Dynamics with a panorama of recent developments" by B.Hasselblatt and A.Katok.

1. (Exercise 1.2.4 in [HK]) Consider the sequence of numbers $\left\{b_{i}\right\}_{i=1}^{\infty}$ such that $b_{0}=b_{1}=1$ and $b_{n+1}=b_{n}+b_{n-1}$ for $n \in \mathbb{N}$. For all $n \in \mathbb{N} \cup\{0\}$, express $\sum_{i=0}^{n} b_{i}$ in terms of b_{n+2}.
2. (Exercise 1.2.18 in [HK]) Denote by a_{n} the number of sequences of 0's and 1's of length n that do not have two consecutive 0's. Show that $a_{1}=2, a_{2}=3$ and $a_{n+1}=a_{n}+a_{n-1}$ for $n \in \mathbb{N} \backslash\{1\}$.
3. (Exercise 1.3.1 in $[\mathrm{HK}])$ Let $T(x, y)=\left(\frac{2 x y}{x+y}, \frac{x+y}{2}\right)$ for $x, y \in[0, \infty)$. As we discussed in class, T can be used to approximate square roots. To approximate $\sqrt{4}$, calculate $T^{4}(1,4)$ and determine how close the approximation obtained is to 2 .
4. (Exercise 1.3.9 and 1.3 .10 in $[\mathrm{HK}]$) Consider the sequence $x_{n}=n^{2}$ for $n \in \mathbb{N} \cup\{0\}$. The sequence of last digits of $\left\{x_{n}\right\}_{n=0}^{\infty}$ turns out to be 0149656941 repeated periodically.
(a) Prove that the sequence of last digits of $\left\{x_{n}\right\}_{n=0}^{\infty}$ indeed repeats periodically.
(b) Explain why the part 01496569410 of the obtained sequence is a palindromic sequence, i.e., unchanged when reversed.
5. Let X be the set of bi-infinite sequences of 0 's and 1's, i.e., if $x \in X$ then $x=\ldots x_{-n} \ldots x_{-1} x_{0} x_{1} \ldots x_{n} \ldots$ where $x_{i} \in\{0,1\}$ for all $i \in \mathbb{Z}$ (this set X is typically denoted $\{0,1\}^{\mathbb{Z}}$). For $x, y \in X$, we have $x=y$ if and only if $x_{i}=y_{i}$ for all $i \in \mathbb{Z}$.
Define a function d on $X \times X$ by $d(x, y)=\frac{1}{n+1}$ where $n \in \mathbb{N} \cup\{0\}$ is such that $x_{k}=y_{k}$ if $|k|<n$ and $\left(x_{n} \neq y_{n}\right.$ or $\left.x_{-n} \neq y_{-n}\right)$ when $x \neq y$. If $x=y$, then we set $d(x, y)=0$.
Show that d is a distance function, i.e., verify that $d(x, y)=0$ if and only if $x=y, d(x, y)=$ $d(y, x)$, and the triangle inequality $d(x, z) \leq d(x, y)+d(y, z)$.
