Homework 1 - Solutions

MAT 351, Instructor: Alena Erchenko

1. Solution. Let $S_{n}=\sum_{i=0}^{n} b_{i}$. Then,

$$
\begin{aligned}
2 S_{n} & =2 \sum_{i=0}^{n} b_{i}=b_{0}+\sum_{i=0}^{n-1}\left(b_{i}+b_{i+1}\right)+b_{n} \\
& =b_{0}+\sum_{i=0}^{n-1} b_{i+2}+b_{n}=\sum_{i=0}^{n} b_{i}-b_{1}+\left(b_{n+1}+b_{n}\right) \\
& =S_{n}-1+b_{n+2} .
\end{aligned}
$$

Therefore, $S_{n}=b_{n+2}-1$.
2. Solution. The sequences of 0 's and 1's of length 1 are 0 and 1 and they do not have two consecutive 0 's, so $a_{1}=2$.
The sequences of 0 's and 1 's of length 2 that do not have two consecutive 0 's are 01,10 , and 11 , so $a_{2}=3$.
Let $n \in \mathbb{N}$. Any sequence of 0 's and 1's of length $n+1$ that do not have two consecutive 0 's that ends on 1 is a sequence of 0's and 1's of length n that do not have two consecutive 0 's with added 1 on the $n+1$-st position. Any sequence of 0 's and 1 's of length $n+1$ that do not have two consecutive 0 's that ends on 0 should have 1 on the n-th position. Thus, such sequence is obtained as a sequence of 0 's and 1's of length n that do not have two consecutive 0 's with added 1 on the n-th position and 0 on the $n+1$-st position. Therefore, $a_{n+1}=a_{n}+a_{n-1}$.
3. Solution. We have

$$
\begin{aligned}
T(1,4) & =(1.6,2.5), \quad T^{2}(1,4)=(1.95121951219,2.05) \\
T^{3}(1,4) & =(1.99939042974,2.00060975609), \quad T^{4}(1,4)=(1.99999990707,2.00000009291)
\end{aligned}
$$

Notice that $2-1.99999990707=0.00000009293$ and $2.00000009291-2=0.00000009291$.
Therefore, using $T^{4}(1,4)$ we can approximate $\sqrt{4}$ by 1.99999990707 which is at the distance 0.00000009293 to 2 or by 2.00000009291 which is at the distance 0.00000009291 to 2 .
4. Notice that for any $k \in \mathbb{N} \cup\{0\}$ we have that $k \equiv$ the last digit of $k(\bmod 10)$.
(a) Solution. For any $n \in \mathbb{N} \cup\{0\}$ we have $(n+10)^{2}-n^{2}=10(2 n+10)$ where $2 n+10 \in \mathbb{N}$ so $(n+10)^{2} \equiv n^{2}(\bmod 10)$. Thus, the last digits of $(n+10)^{2}$ and n^{2} are the same, so we see a periodic sequence.
(b) Solution. Let $n \in \mathbb{N} \cup\{0\}$ such that $n \equiv 0(\bmod 10)$. Then, for any $k \in\{0,1,2,3,4,5\}$, we have $(n+k)^{2}-(n+10-k)^{2} \equiv 4 n k(\bmod 10)$ so $(n+k)^{2}-(n+10-k)^{2} \equiv 0$ $(\bmod 10)$ so $(n+k)^{2} \equiv(n+10-k)^{2}(\bmod 10)$. Therefore, we see a palindromic sequence 01496569410.
5. Solution. First, we show that $d(x, y)=0$ if and only if $x=y$. If $x=y$, then by definition we have that $d(x, y)=0$. Assume $x \neq y$. Then there exists $k \in \mathbb{Z}$ such that $x_{k} \neq y_{k}$. In particular, there exists $n \in \mathbb{N} \cup\{0\}$ such that $x_{k}=y_{k}$ if $|k|<n$ and $\left(x_{n} \neq y_{n}\right.$ or $\left.x_{-n} \neq y_{-n}\right)$. Thus, $d(x, y)=\frac{1}{n+1} \neq 0$. Therefore, $d(x, y)=0$ implies $x=y$.
Second, we show that $d(x, y)=d(y, x)$. If $d(x, y)=0$, then by what we already showed we have $x=y$ so $y=x$ and $d(y, x)=0$. Assume that $d(x, y) \frac{1}{n+1}$ for $n \in \mathbb{N} \cup\{0\}$. Then, $x_{k}=y_{k}$ if $|k|<n$ and $\left(x_{n} \neq y_{n}\right.$ or $\left.x_{-n} \neq y_{-n}\right)$ so $y_{k}=x_{k}$ if $|k|<n$ and $\left(y_{n} \neq x_{n}\right.$ or $\left.y_{-n} \neq x_{-n}\right)$ so $d(y, x)=\frac{1}{n+1}$ by definition of d.
Finally, we show the triangle inequality $d(x, z) \leq d(x, y)+d(y, z)$. If any of $d(x, z), d(x, y)$, or $d(y, z)$ is equal to 0 , then the statement is obviously true from the fact that $d(x, y)=0$ if and only if $x=y$. Assume that $d(x, z), d(x, y)$, and $d(y, z)$ are all non-zero.
Let $d(x, y)=\frac{1}{l+1}$ and $d(y, z)=\frac{1}{m+1}$ for some $l, m \in \mathbb{N} \cup\{0\}$. Without loss of generality we can assume that $l \leq m$. Then, $x_{k}=y_{k}$ if $|k|<l$ and $\left(x_{l} \neq y_{l}\right.$ or $\left.x_{-l} \neq y_{-l}\right)$. Also, $y_{k}=z_{k}$ if $|k|<m$ and $\left(y_{m} \neq z_{m}\right.$ or $\left.y_{-m} \neq z_{-m}\right)$. Since $l \leq m$, we have that $x_{k}=z_{k}$ if $|k|<l$. Thus, if $x_{i} \neq z_{i}$ then $|i| \geq l$ and $d(x, z) \leq \frac{1}{l+1} \leq d(x, y)+d(y, z)$.
Remark: We actually showed a stronger inequality that $d(x, z) \leq \max \{d(x, y), d(y, z)\}$.

