
Homework 1 - Solutions

MAT 351, Instructor: Alena Erchenko

1. Solution. Let Sn =
n∑

i=0

bi. Then,

2Sn = 2
n∑

i=0

bi = b0 +
n−1∑
i=0

(bi + bi+1) + bn

= b0 +
n−1∑
i=0

bi+2 + bn =
n∑

i=0

bi − b1 + (bn+1 + bn)

= Sn − 1 + bn+2.

Therefore, Sn = bn+2 − 1.

2. Solution. The sequences of 0’s and 1’s of length 1 are 0 and 1 and they do not have two
consecutive 0’s, so a1 = 2.

The sequences of 0’s and 1’s of length 2 that do not have two consecutive 0’s are 01, 10, and
11, so a2 = 3.

Let n ∈ N. Any sequence of 0’s and 1’s of length n + 1 that do not have two consecutive 0’s
that ends on 1 is a sequence of 0’s and 1’s of length n that do not have two consecutive 0’s with
added 1 on the n + 1-st position. Any sequence of 0’s and 1’s of length n + 1 that do not have
two consecutive 0’s that ends on 0 should have 1 on the n-th position. Thus, such sequence
is obtained as a sequence of 0’s and 1’s of length n that do not have two consecutive 0’s with
added 1 on the n-th position and 0 on the n + 1-st position. Therefore, an+1 = an + an−1.

3. Solution. We have

T (1, 4) = (1.6, 2.5), T 2(1, 4) = (1.95121951219, 2.05)

T 3(1, 4) = (1.99939042974, 2.00060975609), T 4(1, 4) = (1.99999990707, 2.00000009291).

Notice that 2− 1.99999990707 = 0.00000009293 and 2.00000009291− 2 = 0.00000009291.

Therefore, using T 4(1, 4) we can approximate
√

4 by 1.99999990707 which is at the distance
0.00000009293 to 2 or by 2.00000009291 which is at the distance 0.00000009291 to 2.

4. Notice that for any k ∈ N ∪ {0} we have that k ≡ the last digit of k (mod 10).

(a) Solution. For any n ∈ N ∪ {0} we have (n + 10)2 − n2 = 10(2n + 10) where 2n + 10 ∈ N
so (n + 10)2 ≡ n2 (mod 10). Thus, the last digits of (n + 10)2 and n2 are the same, so we
see a periodic sequence.



(b) Solution. Let n ∈ N ∪ {0} such that n ≡ 0 (mod 10). Then, for any k ∈ {0, 1, 2, 3, 4, 5},
we have (n + k)2 − (n + 10 − k)2 ≡ 4nk (mod 10) so (n + k)2 − (n + 10 − k)2 ≡ 0
(mod 10) so (n+ k)2 ≡ (n+ 10− k)2 (mod 10). Therefore, we see a palindromic sequence
01496569410.

5. Solution. First, we show that d(x, y) = 0 if and only if x = y. If x = y, then by definition we
have that d(x, y) = 0. Assume x 6= y. Then there exists k ∈ Z such that xk 6= yk. In particular,
there exists n ∈ N ∪ {0} such that xk = yk if |k| < n and (xn 6= yn or x−n 6= y−n). Thus,
d(x, y) = 1

n+1
6= 0. Therefore, d(x, y) = 0 implies x = y.

Second, we show that d(x, y) = d(y, x). If d(x, y) = 0, then by what we already showed we
have x = y so y = x and d(y, x) = 0. Assume that d(x, y) 1

n+1
for n ∈ N ∪ {0}. Then, xk = yk

if |k| < n and (xn 6= yn or x−n 6= y−n) so yk = xk if |k| < n and (yn 6= xn or y−n 6= x−n) so
d(y, x) = 1

n+1
by definition of d.

Finally, we show the triangle inequality d(x, z) ≤ d(x, y) + d(y, z). If any of d(x, z), d(x, y), or
d(y, z) is equal to 0, then the statement is obviously true from the fact that d(x, y) = 0 if and
only if x = y. Assume that d(x, z), d(x, y), and d(y, z) are all non-zero.

Let d(x, y) = 1
l+1

and d(y, z) = 1
m+1

for some l,m ∈ N ∪ {0}. Without loss of generality we
can assume that l ≤ m. Then, xk = yk if |k| < l and (xl 6= yl or x−l 6= y−l). Also, yk = zk if
|k| < m and (ym 6= zm or y−m 6= z−m). Since l ≤ m, we have that xk = zk if |k| < l. Thus, if
xi 6= zi then |i| ≥ l and d(x, z) ≤ 1

l+1
≤ d(x, y) + d(y, z).

Remark: We actually showed a stronger inequality that d(x, z) ≤ max{d(x, y), d(y, z)}.


