Homework 2 - Solutions

MAT 351, Instructor: Alena Erchenko

1. Solution. Since f is a contraction, there exists $0 \leq \lambda<1$ such that $d(f(x), f(y)) \leq \lambda d(x, y)$ for all $x, y \in X$.
Let $x \in X$ and $\varepsilon>0$. If $\lambda=0$, then $d(f(x), f(y)) \leq 0$ for all $x, y \in X$ so, for example, we can take $\delta=1$ and for all $y \in X$ with $d(x, y)<\delta$ we have $d(f(x), f(y))<\varepsilon$.
Assume $\lambda \neq 0$. Let $\delta=\frac{\varepsilon}{\lambda}$. For all $y \in X$ such that $d(x, y)<\delta$ we have

$$
d(f(x), f(y)) \leq \lambda \delta<\lambda \frac{\varepsilon}{\lambda}=\varepsilon
$$

Therefore, f is continuous on X.
2. Solution. Let d be a distance function on \mathbb{R}.

Since f is a contraction on X, there exists $\lambda \in[0,1)$ such that $d(f(a), f(b)) \leq \lambda d(a, b)$ for all $a, b \in X$. Let x and y be fixed points of f, then $d(f(x), f(y))=d(x, y)$ and $d(f(x), f(y)) \leq$ $\lambda d(x, y)$ so $d(x, y)(1-\lambda) \leq 0$. Since $\lambda<1$ and d is a distance function, we have $d(x, y)(1-\lambda) \geq 0$. As a result, $d(x, y)=0$ so $x=y$.
3. Solution. (a) Since $|\cos (3 x)| \leq 1,|\sin (x)| \leq 1$, for $x \in[-1,1]$ we have

$$
|f(x)|=\left|\frac{1}{6} \cos (3 x)+\frac{1}{4} \sin (x)+\frac{1}{5} x\right| \leq \frac{1}{6}|\cos (3 x)|+\frac{1}{4}|\sin (x)|+\frac{1}{5}|x| \leq \frac{1}{6}+\frac{1}{4}+\frac{1}{5}=\frac{37}{60}<1
$$

so $f(x) \in I$ for all $x \in I$.
(b) We have that $f^{\prime}(x)=-\frac{1}{2} \sin (3 x)+\frac{1}{4} \cos (x)+\frac{1}{5}$. We have $\left|f^{\prime}(x)\right| \leq \frac{1}{2}+\frac{1}{4}+\frac{1}{5}=\frac{19}{20}<1$ for $x \in I$. Thus, f is a contraction on I.
4. Solution. (a) Let $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2}$. We have

$$
\begin{aligned}
d\left(f\left(x_{1}, x_{2}\right), f\left(y_{1}, y_{2}\right)\right) & =\sqrt{\left(\frac{x_{1}-1}{2}-\frac{y_{1}-1}{2}\right)^{2}+\left(\frac{x_{2}+4}{3}-\frac{y_{2}+4}{3}\right)^{2}} \\
& =\sqrt{\frac{\left(x_{1}-y_{1}\right)^{2}}{4}+\frac{\left(x_{2}-y_{2}\right)^{2}}{9}} \\
& \leq \sqrt{\frac{\left(x_{1}-y_{1}\right)^{2}}{4}+\frac{\left(x_{2}-y_{2}\right)^{2}}{4}} \\
& \leq \frac{1}{2} \sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}} \\
& =\frac{1}{2} d\left(\left(x_{1}, x_{2}\right), d\left(y_{1}, y_{2}\right)\right) .
\end{aligned}
$$

Thus, f is $\frac{1}{2}$-contraction.
(b) To find a fixed point we need to solve equation $f\left(x_{1}, x_{2}\right)=\left(x_{1}, x_{2}\right)$. We have

$$
\begin{aligned}
& \left(\frac{x_{1}-1}{2}, \frac{x_{2}+4}{3}\right)=\left(x_{1}, x_{2}\right) \\
& \Leftrightarrow \frac{x_{1}-1}{2}=x_{1} \quad \text { and } \quad \frac{x_{2}+4}{3}=x_{2} \\
& \Leftrightarrow x_{1}=-1 \quad \text { and } \quad x_{2}=2 .
\end{aligned}
$$

Therefore, $x_{0}=(-1,2)$ is the unique fixed point of f.
(c) Let $x=(1,-1)$. We have $f(x)=f(1,-1)=(0,1)$. In the item (1) we got $\lambda=\frac{1}{2}$. We have $d(f(x), x)=\sqrt{5}$. Using the hint, we want to find $n \in \mathbb{N}$ such that $\frac{\lambda^{n}}{1-\lambda} d(f(x), x)<0.01$, i.e., $\left(\frac{1}{2}\right)^{n-1}<\frac{0.01}{\sqrt{5}}$. We want n such that $2^{n-1}>100 \sqrt{5}$ so $n>1+\frac{\ln (100 \sqrt{5})}{\ln 2}$. Using calculator, we can see that we can take $n=8$ as $8>1+\frac{\ln (100 \sqrt{5})}{\ln 2}$.
5. Solution. Let λ be any number between 1 and $\left|f^{\prime}(p)\right|$, e.g., $\left|f^{\prime}(p)\right|>\lambda=\frac{1+\left|f^{\prime}(p)\right|}{2}>1$.

Since $f^{\prime}(p)=\lim _{x \rightarrow p} \frac{f(x)-f(p)}{x-p}=\lim _{x \rightarrow p} \frac{f(x)-p}{x-p}$, there exists $\varepsilon>0$ such that for all x such that $0<|x-p|<\varepsilon$, we have $\left|\frac{f(x)-p}{x-p}\right| \geq \lambda$, i.e., $|f(x)-p| \geq \lambda|x-p|$.
Let x be such that $|x-p|=a \in(0, \varepsilon)$. Since $\lambda>1$, there exists N such that $\lambda^{N} a>\varepsilon$. Assume $0<\left|f^{n}(x)-p\right|<\varepsilon$ for $n=1,2, \ldots, N-1$. (Otherwise, we have already found already a moment when an iterate of x is outside of ε-neighborhood of p. Notice that if $|x-p| \in(0, \varepsilon)$, then $|f(x)-p| \neq 0$.) Then, we have

$$
\left|f^{N}(x)-p\right| \geq \lambda\left|f^{N-1}(x)-p\right| \geq \ldots \geq \lambda^{N}|x-p|=\lambda^{N} a>\varepsilon
$$

Therefore, f is a repeller.
6. Solution. (a) To find fixed points, we need to solve $f(x)=x$. We obtain

$$
\begin{aligned}
& x+\frac{1}{10} \cos (3 \pi x)=x \quad \Leftrightarrow \\
& \cos (3 \pi x)=0 \quad \Leftrightarrow \\
& 3 \pi x=\frac{\pi}{2}+\pi n \text { where } n \in \mathbb{Z} \quad \Leftrightarrow \\
& x_{n}=\frac{1}{6}+\frac{n}{3} \text { where } n \in \mathbb{Z}
\end{aligned}
$$

Therefore, x_{n} for $n=0,1,2$ are the fixed points in [0,1], i.e., $\frac{1}{6}, \frac{1}{2}$ and $\frac{5}{6}$ are the fixed points of f on $[0,1]$.
(b) We have $f^{\prime}\left(x_{n}\right)=1-\frac{3 \pi}{10} \sin (3 \pi x)$ so $f^{\prime}\left(\frac{1}{6}+\frac{n}{3}\right)=1-\frac{3 \pi}{10} \sin \left(\frac{\pi}{2}+\pi n\right)$. Thus, we obtain $f^{\prime}\left(x_{2 k}\right)=1-\frac{3 \pi}{10} \in(0,1)$ and $f^{\prime}\left(x_{2 k+1}\right)=1+\frac{3 \pi}{10}>1$. Therefore, $x_{0}=\frac{1}{6}, x_{2}=\frac{5}{6}$ are attracting fixed points and $x_{1}=\frac{1}{2}$ are repelling fixed points on $[0,1]$.

