Homework 3 - Solutions

MAT 351, Instructor: Alena Erchenko

1. Solution.

Note that x is a periodic point of T_{2} of period n iff $T_{2}^{n}(x)=x$. Moreover, $T_{2}\left(\left[0, \frac{1}{2}\right]\right)=[0,1]$, $T_{2}\left(\left[\frac{1}{2}\right]\right)=[0,1], T_{2}(0)=T_{2}(1)=0$, and $T_{2}\left(\frac{1}{2}\right)=1$. Recall that fixed points of a function $y=f(x)$ are given by the intersection points with the line $y=x$. Each "tooth" like on the graph gives 2 fixed points. Let w_{n} be the number of "teeth" for T_{2}^{n}. Then, $w_{1}=1$ and $w_{n+1}=2 w_{n}$ from the properties of T_{2} so $w_{n}=2^{n-1}$. Therefore, T_{2}^{n} has 2^{n} fixed points so T_{2} has 2^{n} periodic points of period n.
2. Proof. (\Rightarrow) : Since $T_{2}(x)=2 x$ or $2-2 x$, we have that $T_{2}^{n}(x)=k+(-1)^{l} 2^{n} x$ for some $k \in \mathbb{Z}$ and $l \in\{0,1\}$. Thus, $T_{2}^{n}(x)=T_{2}^{m}(x)$ implies that $k_{1}+(-1)^{l_{1}} 2^{n} x=k_{2}+(-1)^{l_{2}} 2^{m} x$ for some $k_{1}, k_{2} \in \mathbb{Z}$ and $l_{1}, l_{2} \in\{0,1\}$. We obtain that if $m \neq n$ and $T_{2}^{n}(x)=T_{2}^{m}(x)$, then

(\Leftarrow) : Let $x \in[0,1] \cap \mathbb{Q}$. Then, $x=\frac{p}{q}$ where $q \in \mathbb{N}$ and $p \in\{0,1, \ldots, q\}$. Also, $T\left(\frac{a}{q}\right)=\frac{2 a}{q}$ or $T\left(\frac{a}{q}\right)=2-2 \frac{a}{q}=\frac{2(q-a)}{q}$. In any case, $T\left(\frac{a}{q}\right)$ is of the form $\frac{b}{q}$ where $b \in\{0,1,2, \ldots, q\}$. Therefore, $T^{n}(x)=T^{n}\left(\frac{p}{q}\right)=\frac{k}{q}$ for some $k=\{0,1, \ldots, q\}$. Since there are only finitely many options for k, we obtain that there exists $n, m \in \mathbb{N} \cup\{0\}$ such that $n \neq m$ and $T^{n}(x)=T^{m}(x)$ for $x \in \mathbb{Q}$ so x is eventually periodic.
3. Solution. Let $\alpha \in \mathbb{R} \backslash \mathbb{Q}$. Assume, for contradiction, that R_{α} has a periodic point $x \in S^{1}$ with period $n \in \mathbb{N}$. Then, $R_{\alpha}^{n}(x)=x$ so $x+n \alpha=x+k$ for some $k \in \mathbb{Z}$. Therefore, $\alpha=\frac{k}{n}$ where $k \in \mathbb{Z}$ and $n \in \mathbb{N}$ so $\alpha \in \mathbb{Q}$ contradicting the fact that $\alpha \in \mathbb{R} \backslash \mathbb{Q}$.
4. (a) Solution. Let $x \in S^{1} . E_{2}(x)=x \Leftrightarrow 2 x=x(\bmod 1) \Leftrightarrow 2 x=x+k$ for some $k \in \mathbb{Z} \Leftrightarrow x=$ k for some $k \in \mathbb{Z}$. Thus, $0 \in S^{1}$ is a unique fixed point.
(b) Solution. Let $x \in S^{1}$. $E_{2}^{n}(x)=x \Leftrightarrow 2^{n} x=x(\bmod 1) \Leftrightarrow 2^{n} x=x+k$ for some $k \in \mathbb{Z} \Leftrightarrow$ $x=\frac{k}{2^{n}-1}$ for some $k \in \mathbb{Z}$.
Thus, $x_{k}=\frac{k}{2^{n}-1} \in S^{1}$ where $k=0,1,2, \ldots, 2^{n}-2$ are all periodic points of period n for E_{2}.
(c) Solution. By the part (b), all periodic points of period 3 for E_{2} on S^{1} are $x_{k}=\frac{k}{7}$ for $k=0,1, \ldots, 6$.
The points has prime period 3 if it is not a periodic point with period 2 or a fixed point. Periodic points with period 2 are $y_{m}=\frac{m}{3}$ for $m=0,1,2$ and the only fixed point is 0 .
Therefore, the periodic points of E_{2} on S^{1} with prime period 3 are $x_{k}=\frac{k}{7}$ for $k=$ $1, \ldots, 6$.
(d) Proof. By the part (b), we have that $x_{k, n}=\frac{k}{2^{n}-1} \in S^{1}$ where $k=0,1,2, \ldots, 2^{n}-2$ are all periodic points of period n for E_{2}. Notice that for fixed $n, x_{k, n}$ split S^{1} into $2^{n}-1$ half-open arcs of length $\frac{1}{2^{n}-1}$. We have that $\lim _{n \rightarrow \infty} \frac{1}{2^{n}-1}=0$ so for any $\varepsilon>0$ there exists $N=N(\varepsilon)>0$ such that $\frac{1}{2^{N}-1}<\varepsilon$. Thus, since any $z \in S^{1}$ belongs to the one of arcs of length $\frac{1}{2^{N}-1}<\varepsilon$ with endpoints being periodic points of E_{2}, we obtain that there exists a periodic point $y \in S^{1}$ of E_{2} such that $d(z, y)<\varepsilon$.
5. (a) Solution.

$$
\sum_{d=1}^{9} f(d)=\sum_{d=1}^{9} \log _{10}\left(\frac{d+1}{d}\right)=\log _{10}\left(\prod_{d=1}^{9}\left(\frac{d+1}{d}\right)\right)=\log _{10}(10)=1
$$

Other way,

$$
\sum_{d=1}^{9} f(d)=\sum_{d=1}^{9} \lim _{n \rightarrow \infty} \frac{F_{d}(n)}{n}=\lim _{n \rightarrow \infty} \frac{\sum_{d=1}^{9} F_{d}(n)}{n}=\lim _{n \rightarrow \infty} \frac{n}{n}=\lim _{n \rightarrow \infty} 1=1
$$

(b) Solution.
$f(1)=\log _{10}\left(\frac{2}{1}\right) \approx 0.301, \quad f(2)=\log _{10}\left(\frac{3}{2}\right) \approx 0.176, \quad f(3)=\log _{10}\left(\frac{4}{3}\right) \approx 0.125$,
$f(4)=\log _{10}\left(\frac{5}{4}\right) \approx 0.097, \quad f(5)=\log _{10}\left(\frac{6}{5}\right) \approx 0.079, \quad f(6)=\log _{10}\left(\frac{7}{6}\right) \approx 0.067$,
$f(7)=\log _{10}\left(\frac{8}{7}\right) \approx 0.058, \quad f(8)=\log _{10}\left(\frac{9}{8}\right) \approx 0.051, \quad f(9)=\log _{10}\left(\frac{10}{9}\right) \approx 0.046$.
(c) Solution. Let $g(2)$ be the asymptotic frequency of 2 being the second digit of 2^{n}. Since we look at second digit, we can have any natural number from 1 to 9 as a first digit. Thus,

$$
\begin{aligned}
g(2) & =f(12)+f(22)+f(32)+f(42)+f(52)+f(62)+f(72)+f(82)+f(92) \\
& =\log _{10}\left(\frac{13}{12}\right)+\log _{10}\left(\frac{23}{22}\right)+\log _{10}\left(\frac{33}{32}\right)+\log _{10}\left(\frac{43}{42}\right)+\log _{10}\left(\frac{53}{52}\right) \\
& +\log _{10}\left(\frac{63}{62}\right)+\log _{10}\left(\frac{73}{72}\right)+\log _{10}\left(\frac{83}{82}\right)+\log _{10}\left(\frac{93}{92}\right) \\
& \approx 0.109
\end{aligned}
$$

(d) Solution. Let $d \in\{1,2,3,4,5,6,7,8,9\}$. Then, d is the first digit of $3 \cdot 2^{n}$ iff $d \cdot 10^{k} \leq$ $3 \cdot 2^{n} \leq(d+1) \cdot 10^{k}$ for some $k \in \mathbb{N} \cup\{0\}$ iff $\log _{10} d+k \leq \log _{10} 3+n \log _{10} 2<\log _{10}(d+1)+k$ for some $k \in \mathbb{N} \cup\{0\}$.
Thus, d gives the first digit of $2^{n} \Leftrightarrow$ if we start with $\log _{10} 3$ and apply the rotation R_{α} with $\alpha=\log 2 n$ times, the point will end up in the interval $\left[\log _{10} d, \log _{10}(d+1)\right)$ on S^{1}. Since $\alpha=\log 2$ is irrational, then the positive semiorbit of any $x \in S^{1}$ under R_{α} is uniformly distributed. Therefore, the asymptotic frequency of d as the first digit for the numbers of the form $3 \cdot 2^{n}$ is the same as the asymptotic frequency of d as the first digit for the numbers of the form 2^{n}.

