Homework 3

MAT 351, Instructor: Alena Erchenko

[D] stands for "An introduction to chaotic dynamical systems" by R.L. Devaney

1. (Exercise 3 in Chapter 1.5 in [D]) Sketch the graph of the tent map

$$
T_{2}(x)=\left\{\begin{array}{lrr}
2 x & \text { if } & 0 \leq x \leq \frac{1}{2} \\
2-2 x & \text { if } \quad \frac{1}{2} \leq x \leq 1
\end{array}\right.
$$

on the unit interval $[0,1]$. Use the graph of T_{2}^{n} to conclude that T_{2} has exactly 2^{n} periodic points of period n.
2. Let $T_{2}:[0,1] \rightarrow[0,1]$ be the tent map from the previous exercise. We say that x is eventually periodic for T_{2} if $T_{2}^{n}(x)=T_{2}^{m}(x)$ for some $m, n \in \mathbb{N} \cup\{0\}$ such that $m \neq n$.
Show that x is eventually periodic for T_{2} if and only if $x \in[0,1] \cap \mathbb{Q}$.
3. Suppose that $\alpha \in \mathbb{R} \backslash \mathbb{Q}$. Prove that the rotation map R_{α} on $S^{1}=\mathbb{R} / \mathbb{Z}$ has no periodic points.
4. On $S^{1}=\mathbb{R} / \mathbb{Z}$ define a map E_{2} by $E_{2}(x)=2 x(\bmod 1)$ for all $x \in S^{1}$.
(a) Find all fixed points for E_{2}.
(b) Given $n \in \mathbb{N}$, find all periodic points of period n.
(c) Find all periodic points of prime period 3.
(d) Prove that periodic points of E_{2} are dense in S^{1}.
5. Consider $d \in \mathbb{N}$. Let $F_{d}(n)$ be the number of integers $k \in[0, n)$ such that d gives the first digits of 2^{k}. Then, the asymptotic frequency $f(d)$ of d defined by $f(d)=\lim _{n \rightarrow \infty} \frac{F_{d}(n)}{n}$ is equal to $\log _{10}\left(\frac{d+1}{d}\right)$ by a theorem proved in the class.
(a) Verify that $\sum_{d=1}^{9} f(d)=1$.
(b) Use a calculator to compute the asymptotic frequencies $f(d)$ for $d=1,2, \ldots, 9$ (write your answer up to three decimal places).
(c) Find the asymptotic frequency of 2 being the second digit of 2^{n}. Explain your answer. Use a calculator to obtain a numerical answer (write your answer up to three decimal places). Hint: Can you say something about the first two digits?
(d) Find the asymptotic frequencies of $1,2,3, \ldots, 9$ as the first digits for the numbers of the form $3 \cdot 2^{n}$ where $n=0,1,2, \ldots$. Are they different from those for 2^{n} ? Justify your answer.

