Homework 3

MAT 351, Instructor: Alena Erchenko

- [D] stands for "An introduction to chaotic dynamical systems" by R.L. Devaney
- 1. (Exercise 3 in Chapter 1.5 in [D]) Sketch the graph of the tent map

$$T_2(x) = \begin{cases} 2x & \text{if } 0 \le x \le \frac{1}{2}, \\ 2 - 2x & \text{if } \frac{1}{2} \le x \le 1 \end{cases}$$

on the unit interval [0, 1]. Use the graph of T_2^n to conclude that T_2 has exactly 2^n periodic points of period n.

- 2. Let $T_2: [0,1] \to [0,1]$ be the tent map from the previous exercise. We say that x is eventually periodic for T_2 if $T_2^n(x) = T_2^m(x)$ for some $m, n \in \mathbb{N} \cup \{0\}$ such that $m \neq n$. Show that x is eventually periodic for T_2 if and only if $x \in [0,1] \cap \mathbb{Q}$.
- 3. Suppose that $\alpha \in \mathbb{R} \setminus \mathbb{Q}$. Prove that the rotation map R_{α} on $S^1 = \mathbb{R}/\mathbb{Z}$ has no periodic points.
- 4. On $S^1 = \mathbb{R}/\mathbb{Z}$ define a map E_2 by $E_2(x) = 2x \pmod{1}$ for all $x \in S^1$.
 - (a) Find all fixed points for E_2 .
 - (b) Given $n \in \mathbb{N}$, find all periodic points of period n.
 - (c) Find all periodic points of prime period 3.
 - (d) Prove that periodic points of E_2 are dense in S^1 .
- 5. Consider $d \in \mathbb{N}$. Let $F_d(n)$ be the number of integers $k \in [0, n)$ such that d gives the first digits of 2^k . Then, the asymptotic frequency f(d) of d defined by $f(d) = \lim_{n \to \infty} \frac{F_d(n)}{n}$ is equal to $\log_{10}\left(\frac{d+1}{d}\right)$ by a theorem proved in the class.
 - (a) Verify that $\sum_{d=1}^{9} f(d) = 1$.
 - (b) Use a calculator to compute the asymptotic frequencies f(d) for d = 1, 2, ..., 9 (write your answer up to three decimal places).
 - (c) Find the asymptotic frequency of 2 being the second digit of 2ⁿ. Explain your answer. Use a calculator to obtain a numerical answer (write your answer up to three decimal places). <u>Hint:</u> Can you say something about the first two digits?
 - (d) Find the asymptotic frequencies of 1, 2, 3, ..., 9 as the first digits for the numbers of the form $3 \cdot 2^n$ where n = 0, 1, 2, ... Are they different from those for 2^n ? Justify your answer.