Homework 4 - Solutions

MAT 351, Instructor: Alena Erchenko

- 1. (a) Solution. Notice that $\frac{19}{27} = \frac{2 \cdot 3^2 + 1}{3^3} = \frac{2}{3} + \frac{1}{3^3}$. Thus, $\frac{19}{27} = 0.2022222... = 0.210000....$
 - (b) Solution. $\frac{1}{3} \in S^1$ is neither periodic nor dense as $E_3^n(1/3) = 0 \neq \frac{1}{3}$ for all $n \in \mathbb{N}$.
 - (c) Proof. (\Rightarrow) Assume $x \in S^1$ is eventually periodic for E_3 . Then, there exists $n > m \ge 0$ such that $E_3^n(x) = E_3^m(x)$ so $3^n x 3^m x = k$ for some $k \in \mathbb{Z}$ so $x = \frac{k}{3^n 3^m} \in \mathbb{Q}$. (\Leftarrow) Let $x \in \mathbb{Q} \cap [0, 1)$. Then, $x = \frac{p}{q}$ where $q \in \mathbb{N}$ and $p \in \{0, 1, 2, \dots, q - 1\}$. We have $E_3(\frac{a}{q}) = \frac{3a}{q} \pmod{1}$ so it has the same form $\frac{b}{q}$ where $b \in \{0, 1, 2, \dots, q - 1\}$. Since there are only finitely many such fractions, there exist $n, m \in \mathbb{Z}$ such that $n > m \ge 0$ and $E_3^n(x) = E_3^m(x)$.
 - (d) Solution. Let x = 0 and $y = \frac{1}{3}$, then $d(x, y) = \frac{1}{3}$, $E_3(x) = 0$, $E_3(y) = 0$, and $d(E_3(x), E_3(y)) = 0$.
 - (e) *Proof.* Let $x = 0.a_1a_2a_3...a_nx_{n+1}x_{n+2}...$ and $y = 0.a_1a_2a_3...a_ny_{n+1}y_{n+2}...$ in base 3. Then,

$$|x-y| = \sum_{k=n+1}^{\infty} \frac{|x_k - y_k|}{3^k} \le \sum_{k=n+1}^{\infty} \frac{2}{3^k} = 2\frac{3^{-(n+1)}}{1 - \frac{1}{3}} = \frac{1}{3^n}.$$

Thus, by the definition of d, we have $d(x, y) \leq \frac{1}{3^n}$.

- (f) *Proof.* Consider an interval $I \subset S^1$. Since the length of I increases by a factor of 3 each time we apply E_3 until the length of the interval to which we apply E_3 is less than $\frac{1}{3}$ and the image under E_3 coincides with S^1 if the length of an interval is greater or equal to $\frac{1}{3}$, there exists $n \in \mathbb{N}$ such that $E_3^n(I) = S^1$. If $E_3(I) = I$, then $E_3^n(I) = I = S^1$. Thus, there is no an interval $I \subset S^1$ such that $E_3(I) = I$ and $I \neq S^1$.
- 2. (a) *Proof.* Since $f: [0,1] \to [0,1]$ is surjective, then there exists $a, b \in [0,1]$ such that f(a) = 0and f(b) = 1, in particular, $f(a) \le a$ and $f(b) \ge b$. Consider a function g(x) = f(x) - xon [0,1]. The function g is continuous on [0,1] because f is continuous on [0,1]. Moreover, $g(a) \le 0$ and $g(b) \ge 0$. Thus, by the Intermediate Value Theorem, there exists $c \in [a,b] \subset$ [0,1] such that g(c) = 0 so f(c) = c so c is a fixed point for f.
 - (b) Proof. First, we show that either f or f^2 must have points $0 \le x_1 < x_2 \le 1$ such that x_1 maps to 0 and x_2 maps to 1. Since $f: [0,1] \to [0,1]$ is surjective, then there exists $a, b \in [0,1]$ such that f(a) = 0 and f(b) = 1. Notice that $a \ne b$ since f is a function. If a < b, then let $x_1 = a$ and $x_2 = b$. Assume that there are no $0 \le x_1 < x_2 \le 1$ such that $f(x_1) = 0$ and $f(x_2) = 1$. Let $m_1 = \max\{x | f(x) = 1\}$ and $m_2 = \min\{x | f(x) = 0\}$. By our assumption $m_1 < m_2$. We claim that there exists $x_1, x_2 \in [m_1, m_2]$ such that $x_1 < x_2$ and $f^2(x_1) = 0$ and $f^2(x_2) = 1$. By the Intermediate Value Theorem applied to f, we have that there exists $x_1 \in [m_1, m_2]$ such that $f(x_1) = 1$.

Thus, $f^2(x_1) = f(m_2) = 0$. Since $0 \ge m_1 < m_2$, $f(x_1) = m_2$ and $f(m_2) = 0$, we have that there exist $x_2 \in [x_1, m_2]$ such that $f(x_2) = m_1$ so $f^2(x_2) = f(m_1) = 1$. In particular, $0 \le x_1 < x_2 \le 1$ by construction and the fact that f^2 is a function.

Now we prove a fact that if $g: [0,1] \to [0,1]$ is a continuous surjective function such that there exist x_1, x_2 such that $0 \le x_1 < x_2 \le 1$ and $g(x_1) = 0$ and $g(x_2) = 1$ then g has at least two fixed points.

<u>Case 1:</u> Assume $x_1 = 0$ and $x_2 = 1$. Then, g(0) = 0 and g(1) = 1 so g has at least two fixed points.

<u>Case 2</u>: Assume $x_1 = 0$ and $x_2 < 1$. Then, g(0) = 0 and g(1) < 1. Moreover, since $g(x_2) = 1 > x_2$ and g(1) < 1, by considering function g(x) - x and applying the Intermediate Value theorem, there exists $c \in (x_2, 1) \subset (0, 1)$ such that g(c) = c. Thus, g has at least two fixed points.

<u>Case 3:</u> Assume $x_1 > 0$. Without loss of generality we can assume $g(0) \neq 0$ as otherwise we could pick $x_1 = 0$ and just follow Cases 1 and 2. If $g(0) \neq 0$, then g(0) > 0 and $g(x_1) = 0 < x_1$, so, by considering function g(x) - x and applying the Intermediate Value theorem, there exists $c \in (0, x_1) \subset (0, 1)$ such that g(c) = c. Moreover, since $g(x_1) = 0 < x_1$ and $g(x_2) = 1 \ge x_2$ and $x_1 < x_2$, by considering function g(x) - xand applying the Intermediate Value theorem, there exists $d \in (x_1, x_2] \subset (0, 1]$ such that g(d) = d. By construction, $c \neq d$ so g has at least two fixed points.

As a result, we have that f^2 has at least two fixed points as, by the first step:

- i. either f has the properties of the described above function g, and f has at least two fixed points which implies that f^2 has at least two fixed points;
- ii. or f^2 can has the properties of the described above function g so f^2 has at least two fixed points.

3. (a) Solution. The total length of removed intervals is

$$\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \ldots = \sum_{n=1}^{\infty} \frac{1}{2^n} = \frac{\frac{1}{2}}{1 - \frac{1}{2}} = 1.$$

(b) *Proof.* We say $x = 0.x_1x_2...$ in the base 4 if $x = \sum_{n=1}^{\infty} \frac{x_n}{4^n}$ where $x_n \in \{0, 1, 2, 3\}$ for all n. Then, $x \in K(4)$ if and only if $x = 0.x_1x_2...$ in the base 4 where $x_n \in \{0, 3\}$ for all n. \Box

(c) Solution.
$$\frac{1}{5} = \sum_{n=1}^{\infty} \frac{3}{4^{2n}} = 0.03030303...$$
 in base 4. Thus, $\frac{1}{5} \in K(4)$.
 $\frac{17}{21} = \sum_{n=0}^{\infty} \left(\frac{3}{4^{3n+1}} + \frac{3}{4^{3n+3}}\right) = 0.303303303303...$ in base 4. Thus, $\frac{17}{21} \in K(4)$.

4. Solution. (a) No. Let $m \in \mathbb{N} \setminus \{1\}$. For example, let x = (1, 1, 1, ...) and y = (1, m, m, ...)then d(x, y) = |1 - 1| = 0 but $x \neq y$. (b) No. Let $m \in \mathbb{N} \setminus \{1\}$. For example, let $x = (1, 1, 1, \ldots)$ and $y = (m, m, m, \ldots)$ then $d(x,y) = \sum_{k=0}^{\infty} |1-m| \notin [0,\infty)$ as the sum diverges because each term is $(m-1) \ge 1$. (c) Yes.