
Homework 4 - Solutions

MAT 351, Instructor: Alena Erchenko

1. (a) Solution. Notice that 19
27

= 2·32+1
33

= 2
3

+ 1
33

. Thus, 19
27

= 0.202222 . . . = 0.210000 . . ..

(b) Solution. 1
3
∈ S1 is neither periodic nor dense as En

3 (1/3) = 0 6= 1
3

for all n ∈ N.

(c) Proof. (⇒) Assume x ∈ S1 is eventually periodic for E3. Then, there exists n > m ≥ 0
such that En

3 (x) = Em
3 (x) so 3nx− 3mx = k for some k ∈ Z so x = k

3n−3m ∈ Q.

(⇐) Let x ∈ Q ∩ [0, 1). Then, x = p
q

where q ∈ N and p ∈ {0, 1, 2, . . . , q − 1}. We have

E3(
a
q
) = 3a

q
(mod 1) so it has the same form b

q
where b ∈ {0, 1, 2, . . . , q − 1}. Since there

are only finitely many such fractions, there exist n,m ∈ Z such that n > m ≥ 0 and
En

3 (x) = Em
3 (x).

(d) Solution. Let x = 0 and y = 1
3
, then d(x, y) = 1

3
, E3(x) = 0, E3(y) = 0, and d(E3(x), E3(y)) =

0.

(e) Proof. Let x = 0.a1a2a3 . . . anxn+1xn+2 . . . and y = 0.a1a2a3 . . . anyn+1yn+2 . . . in base 3.
Then,

|x− y| =
∞∑

k=n+1

|xk − yk|
3k

≤
∞∑

k=n+1

2

3k
= 2

3−(n+1)

1− 1
3

=
1

3n
.

Thus, by the definition of d, we have d(x, y) ≤ 1
3n

.

(f) Proof. Consider an interval I ⊂ S1. Since the length of I increases by a factor of 3 each
time we apply E3 until the length of the interval to which we apply E3 is less than 1

3
and

the image under E3 coincides with S1 if the length of an interval is greater or equal to 1
3
,

there exists n ∈ N such that En
3 (I) = S1. If E3(I) = I, then En

3 (I) = I = S1. Thus, there
is no an interval I ⊂ S1 such that E3(I) = I and I 6= S1.

2. (a) Proof. Since f : [0, 1]→ [0, 1] is surjective, then there exists a, b ∈ [0, 1] such that f(a) = 0
and f(b) = 1, in particular, f(a) ≤ a and f(b) ≥ b. Consider a function g(x) = f(x)− x
on [0, 1]. The function g is continuous on [0, 1] because f is continuous on [0, 1]. Moreover,
g(a) ≤ 0 and g(b) ≥ 0. Thus, by the Intermediate Value Theorem, there exists c ∈ [a, b] ⊂
[0, 1] such that g(c) = 0 so f(c) = c so c is a fixed point for f .

(b) Proof. First, we show that either f or f 2 must have points 0 ≤ x1 < x2 ≤ 1 such that
x1 maps to 0 and x2 maps to 1. Since f : [0, 1] → [0, 1] is surjective, then there exists
a, b ∈ [0, 1] such that f(a) = 0 and f(b) = 1. Notice that a 6= b since f is a function. If
a < b, then let x1 = a and x2 = b. Assume that there are no 0 ≤ x1 < x2 ≤ 1 such that
f(x1) = 0 and f(x2) = 1. Let m1 = max{x|f(x) = 1} and m2 = min{x|f(x) = 0}. By our
assumption m1 < m2. We claim that there exists x1, x2 ∈ [m1,m2] such that x1 < x2 and
f 2(x1) = 0 and f 2(x2) = 1. By the Intermediate Value Theorem applied to f , we have
that there exists x1 ∈ [m1,m2] such that f(x1) = m2 because f(m2) = 0 and f(m1) = 1.



Thus, f 2(x1) = f(m2) = 0. Since 0 ≥ m1 < m2, f(x1) = m2 and f(m2) = 0, we have
that there exist x2 ∈ [x1,m2] such that f(x2) = m1 so f 2(x2) = f(m1) = 1. In particular,
0 ≤ x1 < x2 ≤ 1 by construction and the fact that f 2 is a function.

Now we prove a fact that if g : [0, 1]→ [0, 1] is a continuous surjective function such that
there exist x1, x2 such that 0 ≤ x1 < x2 ≤ 1 and g(x1) = 0 and g(x2) = 1 then g has at
least two fixed points.

Case 1: Assume x1 = 0 and x2 = 1. Then, g(0) = 0 and g(1) = 1 so g has at least two
fixed points.

Case 2: Assume x1 = 0 and x2 < 1. Then, g(0) = 0 and g(1) < 1. Moreover, since g(x2) =
1 > x2 and g(1) < 1, by considering function g(x) − x and applying the Intermediate
Value theorem, there exists c ∈ (x2, 1) ⊂ (0, 1) such that g(c) = c. Thus, g has at least
two fixed points.

Case 3: Assume x1 > 0. Without loss of generality we can assume g(0) 6= 0 as otherwise
we could pick x1 = 0 and just follow Cases 1 and 2. If g(0) 6= 0, then g(0) > 0 and
g(x1) = 0 < x1, so, by considering function g(x) − x and applying the Intermediate
Value theorem, there exists c ∈ (0, x1) ⊂ (0, 1) such that g(c) = c. Moreover, since
g(x1) = 0 < x1 and g(x2) = 1 ≥ x2 and x1 < x2, by considering function g(x) − x
and applying the Intermediate Value theorem, there exists d ∈ (x1, x2] ⊂ (0, 1] such that
g(d) = d. By construction, c 6= d so g has at least two fixed points.

As a result, we have that f 2 has at least two fixed points as, by the first step:

i. either f has the properties of the described above function g, and f has at least two
fixed points which implies that f 2 has at least two fixed points;

ii. or f 2 can has the properties of the described above function g so f 2 has at least two
fixed points.

3. (a) Solution. The total length of removed intervals is

1

2
+

1

22
+

1

23
+ . . . =

∞∑
n=1

1

2n
=

1
2

1− 1
2

= 1.

(b) Proof. We say x = 0.x1x2 . . . in the base 4 if x =
∞∑
n=1

xn

4n
where xn ∈ {0, 1, 2, 3} for all n.

Then, x ∈ K(4) if and only if x = 0.x1x2 . . . in the base 4 where xn ∈ {0, 3} for all n.

(c) Solution. 1
5

=
∞∑
n=1

3
42n

= 0.03030303....... in base 4. Thus, 1
5
∈ K(4).

17
21

=
∞∑
n=0

(
3

43n+1 + 3
43n+3

)
= 0.303303303303....... in base 4. Thus, 17

21
∈ K(4).

4. Solution. (a) No. Let m ∈ N \ {1}. For example, let x = (1, 1, 1, . . .) and y = (1,m,m, . . .)
then d(x, y) = |1− 1| = 0 but x 6= y.



(b) No. Let m ∈ N \ {1}. For example, let x = (1, 1, 1, . . .) and y = (m,m,m, . . .) then

d(x, y) =
∞∑
k=0

|1−m| 6∈ [0,∞) as the sum diverges because each term is (m− 1) ≥ 1.

(c) Yes.


