Homework 4

MAT 351, Instructor: Alena Erchenko

[ASY] stands for "Chaos: An introduction to dynamical systems" by Alligood, Sauer, and Yorke.

1. Let E_{3} be the times- 3 map on the circle $S^{1}=\mathbb{R} / \mathbb{Z}$.
(a) Give two expansions of the number $\frac{19}{27}$ in base 3 .
(b) Find a point whose orbit under the map E_{3} is neither periodic nor dense. Explain your answer.
(c) Show that a point x is eventually periodic (see previous homework for the definition) for the map E_{3} if and only if $x \in \mathbb{Q} \cap S^{1}$.
(d) Find a pair of points on S^{1} whose distance is not tripled by E_{3}. Explain your answer.
(e) Assume that $x, y \in[0,1)$ have expansions in base 3 that coincide up to n-th place, then $d(x, y) \leq \frac{1}{3^{n}}$ where d is the distance on S^{1}.
(f) Show that there is no an interval $I \subset S^{1}$ such that $E_{3}(I)=I$ and $I \neq S^{1}$.
2. (Exercise 3.11 in $[\mathrm{ASY}]$) Let $f:[0,1] \rightarrow[0,1]$ be a surjective continuous map.
(a) Prove that f must have at least one fixed point.

Hint: Recall the Intermediate Value Theorem that can be used without proof:
Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function. Then, for any u such that $\min \{f(a), f(b)\} \leq$ $u \leq \max \{f(a), f(b)\}$ there exists $c \in[a, b]$ such that $f(c)=u$.
(b) Prove that f^{2} must have at least two fixed points.

Hint: Explain why either f or f^{2} must have points $0 \leq x_{1}<x_{2} \leq 1$ such that x_{1} maps to 0 and x_{2} maps to 1.
3. (Exercise 4.2 in [ASY]) Consider the middle-half Cantor set $K(4)$ formed by deleting the middle half of each subinterval instead of the middle third (for example: On the first step you delete $\left(\frac{1}{4}, \frac{3}{4}\right)$, on the second step you delete $\left(\frac{1}{16}, \frac{3}{16}\right)$ and $\left(\frac{13}{16}, \frac{15}{16}\right)$ and so on).
(a) What is the total length of the subintervals removed from $[0,1]$?
(b) What numbers in $[0,1]$ belong to $K(4)$?
(c) Show that $\frac{1}{5}$ is in $K(4)$. What about $\frac{17}{21}$?
4. For each of the functions below, determine weather it is a distance function on Ω_{m}^{+}. If it is a distance, answer Yes. If it is not, answer No and explain why not.
(a) $d(x, y)=\left|x_{0}-y_{0}\right|$ where $x=\left(x_{0}, x_{1}, x_{2}, \ldots\right)$ and $y=\left(y_{0}, y_{1}, y_{2}, \ldots\right)$;
(b) $d(x, y)=\sum_{k=0}^{\infty}\left|x_{k}-y_{k}\right|$ where $x=\left(x_{0}, x_{1}, x_{2}, \ldots\right)$ and $y=\left(y_{0}, y_{1}, y_{2}, \ldots\right)$;
(c) $d(x, y)=\sum_{k=0}^{\infty} \frac{\left|x_{k}-y_{k}\right|}{3^{k}}$ where $x=\left(x_{0}, x_{1}, x_{2}, \ldots\right)$ and $y=\left(y_{0}, y_{1}, y_{2}, \ldots\right)$.

