Homework 5

MAT 351, Instructor: Alena Erchenko

In the problems below consider Ω_m^+ (the space of all one-sided infinite sequences of symbols from $\{1, 2, \ldots, m\}$) with the distance function d given by $d(x, y) = 2^{-n}$ where $n \in \mathbb{N} \cup \{0\}$ is such that $x_k = y_k$ if k < n and $x_n \neq y_n$ and d(x, y) = 0 if x = y. Here $x = (x_0, x_1, x_2, \ldots)$ and $y = (y_0, y_1, y_2, \ldots)$. Denote by σ^+ the shift on Ω_m^+ .

1. Give an example of a periodic point $\omega \in \Omega_3^+$ such that $d(\omega, \omega') < \frac{1}{32}$ for

$$\omega' = (3, 1, 3, 3, 1, 3, 3, 3, 1, 3, 3, 3, 3, 1, \ldots).$$

Explain you answer.

- 2. (a) Find a constant C > 1 such that $d(\sigma^+(\omega), \sigma^+(\omega')) \ge Cd(\omega, \omega')$ for all $\omega, \omega' \in \Omega_m^+$ with $d(\omega, \omega') \le \frac{1}{2}$. Justify your answer. Remark: This is why we can say that σ^+ is expanding.
 - (b) Is it true that $d(\sigma^+(\omega), \sigma^+(\omega')) > d(\omega, \omega')$ for all $\omega, \omega' \in \Omega_m^+$? Justify your answer.

3. Let $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix}$ and consider the corresponding subshift of finite type (Ω_A^+, σ^+) .

- (a) Draw the directed graph Γ_A corresponding to A.
- (b) Find all fixed points.
- (c) By examining the graph, find all periodic points of prime period 2.
- (d) Find the number of admissible paths of length 3 from 3 to 1 in Γ_A .
- (e) Find the number of periodic points of period 3 using A^3 .
- 4. Consider the quadratic family $f_{\lambda}(x) = \lambda x(1-x)$. Recall that if $\lambda > 2 + \sqrt{5}$ then $[0,1] \setminus \{x \in [0,1] | f_{\lambda}(x) > 1\} = I_0 \cup I_1$ where I_0, I_1 are two closed intervals. Prove that if $\lambda > 2 + \sqrt{5}$, then for all $x \in I_0 \cup I_1$ there exists $\mu > 1$ such that $|f'_{\lambda}(x)| \ge \mu$.
- 5. Let $f: A \to A$ and $g: B \to B$ be topologically conjugate maps. Show that there exists a bijection between the periodic points of period n of f and the periodic points of period n of g for all $n \in \mathbb{N}$.
- 6. Consider the quadratic family $f_{\lambda}(x) = \lambda x(1-x)$ for $\lambda > 2 + \sqrt{5}$. Let $\Lambda = [0,1] \setminus \left(\bigcup_{n=0}^{\infty} A_n\right)$ where

 $A_n = \{ x \in [0,1] \mid f_{\lambda}^i(x) \in [0,1] \text{ for } 1 \le i \le n \text{ and } f_{\lambda}^{n+1}(x) \notin [0,1] \}.$

Show that f_{λ} has a dense orbit in Λ .

7. Let $Q_c(x) = x^2 + c$ for $x \in \mathbb{R}$. Prove that if $c < \frac{1}{4}$, there is a unique $\lambda > 1$ such that Q_c is topologically conjugate to $f_{\lambda}(x) = \lambda x(1-x)$ via a map of the form h(x) = ax + b where $a, b \in \mathbb{R}$, i.e., there exists a homeomorphism of the given form such that $h \circ Q_c = f_{\lambda} \circ h$.