Homework 5

MAT 351, Instructor: Alena Erchenko

In the problems below consider Ω_{m}^{+}(the space of all one-sided infinite sequences of symbols from $\{1,2, \ldots, m\}$) with the distance function d given by $d(x, y)=2^{-n}$ where $n \in \mathbb{N} \cup\{0\}$ is such that $x_{k}=y_{k}$ if $k<n$ and $x_{n} \neq y_{n}$ and $d(x, y)=0$ if $x=y$. Here $x=\left(x_{0}, x_{1}, x_{2}, \ldots\right)$ and $y=\left(y_{0}, y_{1}, y_{2}, \ldots\right)$. Denote by σ^{+}the shift on Ω_{m}^{+}.

1. Give an example of a periodic point $\omega \in \Omega_{3}^{+}$such that $d\left(\omega, \omega^{\prime}\right)<\frac{1}{32}$ for

$$
\omega^{\prime}=(3,1,3,3,1,3,3,3,1,3,3,3,3,1, \ldots)
$$

Explain you answer.
2. (a) Find a constant $C>1$ such that $d\left(\sigma^{+}(\omega), \sigma^{+}\left(\omega^{\prime}\right)\right) \geq C d\left(\omega, \omega^{\prime}\right)$ for all $\omega, \omega^{\prime} \in \Omega_{m}^{+}$with $d\left(\omega, \omega^{\prime}\right) \leq \frac{1}{2}$. Justify your answer.
Remark: This is why we can say that σ^{+}is expanding.
(b) Is it true that $d\left(\sigma^{+}(\omega), \sigma^{+}\left(\omega^{\prime}\right)\right)>d\left(\omega, \omega^{\prime}\right)$ for all $\omega, \omega^{\prime} \in \Omega_{m}^{+}$? Justify your answer.
3. Let $A=\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1\end{array}\right)$ and consider the corresponding subshift of finite type $\left(\Omega_{A}^{+}, \sigma^{+}\right)$.
(a) Draw the directed graph Γ_{A} corresponding to A.
(b) Find all fixed points.
(c) By examining the graph, find all periodic points of prime period 2.
(d) Find the number of admissible paths of length 3 from 3 to 1 in Γ_{A}.
(e) Find the number of periodic points of period 3 using A^{3}.
4. Consider the quadratic family $f_{\lambda}(x)=\lambda x(1-x)$. Recall that if $\lambda>2+\sqrt{5}$ then $[0,1] \backslash\{x \in$ $\left.[0,1] \mid f_{\lambda}(x)>1\right\}=I_{0} \cup I_{1}$ where I_{0}, I_{1} are two closed intervals.
Prove that if $\lambda>2+\sqrt{5}$, then for all $x \in I_{0} \cup I_{1}$ there exists $\mu>1$ such that $\left|f_{\lambda}^{\prime}(x)\right| \geq \mu$.
5. Let $f: A \rightarrow A$ and $g: B \rightarrow B$ be topologically conjugate maps. Show that there exists a bijection between the periodic points of period n of f and the periodic points of period n of g for all $n \in \mathbb{N}$.
6. Consider the quadratic family $f_{\lambda}(x)=\lambda x(1-x)$ for $\lambda>2+\sqrt{5}$. Let $\Lambda=[0,1] \backslash\left(\bigcup_{n=0}^{\infty} A_{n}\right)$ where

$$
A_{n}=\left\{x \in[0,1] \mid f_{\lambda}^{i}(x) \in[0,1] \text { for } 1 \leq i \leq n \text { and } f_{\lambda}^{n+1}(x) \notin[0,1]\right\}
$$

Show that f_{λ} has a dense orbit in Λ.
7. Let $Q_{c}(x)=x^{2}+c$ for $x \in \mathbb{R}$. Prove that if $c<\frac{1}{4}$, there is a unique $\lambda>1$ such that Q_{c} is topologically conjugate to $f_{\lambda}(x)=\lambda x(1-x)$ via a map of the form $h(x)=a x+b$ where $a, b \in \mathbb{R}$, i.e., there exists a homeomorphism of the given form such that $h \circ Q_{c}=f_{\lambda} \circ h$.

