Homework 5-Solutions

MAT 351, Instructor: Alena Erchenko

1. Solution. Notice that $32=2^{5}$. Thus, to have $d\left(\omega, \omega^{\prime}\right)<2^{-5}$ we need that ω and ω^{\prime} have the same entries up to the 5 -th position including. In particular, for such ω we will have $d\left(\omega, \omega^{\prime}\right) \leq 2^{-6}$. We choose a periodic point with that extra requirement. For example, take

$$
\omega=(3,1,3,3,1,3,3,1,3,3,1,3,3,1,3,3,1,3, \ldots)
$$

2. (a) Solution. Consider $\omega, \omega^{\prime} \in \Omega_{m}^{+}$such that $d\left(\omega, \omega^{\prime}\right) \leq \frac{1}{2}$. If $\omega=\omega^{\prime}$, then $d\left(\omega, \omega^{\prime}\right)=0$ and $\sigma^{+}(\omega)=\sigma^{+}\left(\omega^{\prime}\right)$ so $d\left(\sigma^{+}(\omega), \sigma^{+}\left(\omega^{\prime}\right)\right)=0$. Assume $\omega \neq \omega^{\prime}$. Since $d\left(\omega, \omega^{\prime}\right) \leq \frac{1}{2}$, there exists $n \in \mathbb{N}$ such that $\omega_{k}=\omega_{k}^{\prime}$ if $k<n$ and $\omega_{n} \neq \omega_{n}^{\prime}$. Then, $\left(\sigma^{+}(\omega)\right)_{k}=\left(\sigma^{+}\left(\omega^{\prime}\right)\right)_{k}$ if $k<n-1$ and $\left(\sigma^{+}(\omega)\right)_{n-1} \neq\left(\sigma^{+}\left(\omega^{\prime}\right)\right)_{n-1}$ so $d\left(\sigma^{+}(\omega), \sigma^{+}\left(\omega^{\prime}\right)\right)=2^{-(n-1)}=2 \cdot 2^{-n}=2 d\left(\omega, \omega^{\prime}\right)$.
Therefore, we can take $C=2$.
(b) Solution. No. Let $m \in \mathbb{N} \backslash\{1\}$. Consider $\omega=(1,1,1, \ldots)$ and $\omega^{\prime}=(m, 1,1, \ldots)$. Then, $d\left(\omega, \omega^{\prime}\right)=2^{-0}=1$ and $\sigma^{+}(\omega)=\sigma^{+}\left(\omega^{\prime}\right)$ so $d\left(\sigma^{+}(\omega), \sigma^{+}\left(\omega^{\prime}\right)\right)=0$. In particular, for our example, $d\left(\sigma^{+}(\omega), \sigma^{+}\left(\omega^{\prime}\right)\right)<d\left(\omega, \omega^{\prime}\right)$.
3. (a) Solution.

(b) Solution. $(1,1,1,1, \ldots)$ and $(3,3,3,3, \ldots)$ are the only fixed points.
(c) Solution. There are no periodic points with prime period 2 .
(d) Solution. We have $A^{3}=\left(\begin{array}{lll}2 & 1 & 2 \\ 2 & 1 & 1 \\ 3 & 2 & 2\end{array}\right)$. Since the $(3,1)$-entry of the matrix A^{3} is 3 , there are 3 admissible paths of length 3 from 3 to 1 .
(e) Solution. The number of periodic points of period 3 is equal to $\operatorname{Trace}\left(A^{3}\right)=2+1+2=5$ (see A^{3} in the previous item).
4. Proof. We have that $f_{\lambda}(x)>1$ iff $\lambda x^{2}-\lambda x+1<0$ iff $\frac{1-\sqrt{1-\frac{4}{\lambda}}}{2}<x<\frac{1+\sqrt{1-\frac{4}{\lambda}}}{2}$. Therefore, $x \in I_{0} \cup I_{1}$ means that $x \in\left[0, \frac{1-\sqrt{1-\frac{4}{\lambda}}}{2}\right] \cup\left[\frac{1+\sqrt{1-\frac{4}{\lambda}}}{2}, 1\right]$. In particular, $|1-2 x| \geq \sqrt{1-\frac{4}{\lambda}}$.
Also, $f_{\lambda}^{\prime}(x)=\lambda(1-2 x)$ so if $x \in I_{0} \cup I_{1}$ then $\left|f_{\lambda}^{\prime}(x)\right| \geq \lambda \sqrt{1-\frac{4}{\lambda}}>1$ as $\lambda^{2}-4 \lambda-1=$ $(\lambda-(2-\sqrt{5}))(\lambda-(2+\sqrt{5}))>0$ for $\lambda>2+\sqrt{5}$. Thus, we can take $\mu=\lambda \sqrt{1-\frac{4}{\lambda}}$.
5. Proof. Since $f: A \rightarrow A$ and $g: B \rightarrow B$ are topologically conjugate, there exists a homeomorphism $h: A \rightarrow B$ such that $h \circ f=g \circ h$.
Denote by $\operatorname{Per}_{n}(f)$ and $\operatorname{Per}_{n}(g)$ the set set of periodic points of period n for f and g, respectively. We define a map $\bar{h}: \operatorname{Per}_{n}(f) \rightarrow \operatorname{Per}_{n}(g)$ by $\bar{h}(p)=h(p)$ for $p \in \operatorname{Per}_{n}(f)$. Let us show that \bar{h} is well defined. Let $p \in \operatorname{Per}_{n}(f)$, then $f^{n}(p)=p$. Thus, using $h \circ f=g \circ h$, we obtain that $h(p)=h\left(f^{n}(p)\right)=g \circ h\left(f^{n-1}(p)\right)=g^{2} \circ h\left(f^{n-2}(p)\right)=\ldots=g^{n} \circ h(p)=g^{n}(h(p))$. Therefore, $g^{n}(h(p))=h(p)$, i.e., $h(p) \in \operatorname{Per}_{n}(g)$, so the codomain of \bar{h} is $\operatorname{Per}_{n}(g)$. Since h is invertible, \bar{h} is invertible with $\bar{h}^{-1}(q)=h^{-1}(q)$ for $q \in \operatorname{Per}_{n}(g)$ so \bar{h} is a bijection.
6. Proof. We showed in class that $\left(\Lambda, f_{\lambda}\right)$ for $\lambda>2+\sqrt{5}$ is topologically conjugate to $\left(\Omega_{2}^{+}, \sigma^{+}\right)$so there exists a homeomorphism $h: \Omega_{2}^{+} \rightarrow \Lambda$ such that $f_{\lambda} \circ h=h \circ \sigma^{+}$.
Let $\omega \in \Omega_{2}^{+}$. Then, $h\left(\left(\sigma^{+}\right)^{n}\right)(\omega)=\left(f_{\lambda}\right)^{n}(h(\omega))$ for all $n \in \mathbb{N} \cup\{0\}$ so the orbit of ω is mapped to the orbit of $h(\omega) \in \Lambda$. Recall that the orbit of $\omega=(0,1,0,0,0,1,1,0,1,1,0,0,0, \ldots, 1,1,1, \ldots)$ under σ^{+}is dense in Ω_{2}^{+}. We show that the orbit of $h(\omega)$ under f_{λ} is dense in Λ.
Let $z \in \Lambda$ and $\varepsilon>0$. We want to show that there exists $N \in \mathbb{N}$ such that $\left|f_{\lambda}^{N}(h(\omega))-z\right|<\varepsilon$. Since h is homeomorphism, h^{-1} exists and h is continuous. In particular, there exists $\delta>0$ such that if $x \in \Omega_{2}^{+}$and $d\left(x, h^{-1}(z)\right)<\delta$ then $\left|h(x)-h\left(h^{-1}(z)\right)\right|<\varepsilon$, i.e., $|h(x)-z|<\varepsilon$. From the density of the orbit of ω in Ω_{2}^{+}, there exists $N \in \mathbb{N}$ such that $d\left(\left(\sigma^{+}\right)^{N}(\omega), h^{-1}(z)\right)<\delta$. Thus, $\left|h\left(\left(\sigma^{+}\right)^{N}(\omega)\right)-z\right|<\varepsilon$ so $\left|f_{\lambda}^{N}(h(\omega))-z\right|<\varepsilon$.
As a result, the orbit of $h(\omega)$ is dense in Λ.
7. Proof. Since h has to be homeomorphism, in particular, invertible, we should have $a \neq 0$. Let us show that if $x<\frac{1}{4}$, we can find $\lambda>1, a \in \mathbb{R} \backslash\{0\}$ and $b \in \mathbb{R}$ such that $h \circ Q_{c}(x)=f_{\lambda} \circ h(x)$ for all $x \in \mathbb{R}$.

We have $h \circ Q_{c}(x)=f_{\lambda} \circ h(x)$ for all $x \in \mathbb{R}$ iff $a\left(x^{2}+c\right)+b=\lambda(a x+b)(1-(a x+b))$ for all $x \in \mathbb{R}$ iff $a=-\lambda a^{2}$ and $-2 \lambda a b+\lambda a=0$ and $a c+b=-\lambda b^{2}+\lambda b$. Since $a \neq 0$, we have $a=-\frac{1}{\lambda}$ (in particular, $\lambda \neq 0$) and $b=\frac{1}{2}$. Using $a c+b=-\lambda b^{2}+\lambda b$, we obtain that we need $\lambda^{2}-2 \lambda+4 c=0$. Since $c<\frac{1}{4}$, the solutions of the previous equation are $\lambda_{1}=1+\sqrt{1-4 c}$ and $\lambda_{2}=1-\sqrt{1-4 c}$ such that $\lambda_{1}>1$ and $\lambda_{2}<1$. Therefore, there exists a unique $\lambda=1+\sqrt{1-4 c}>1$ such that Q_{c} is topologically conjugate to f_{λ} via a homeomorphism h defined by $h(x)=-\frac{1}{\lambda} x+\frac{1}{2}$.

