Homework 6 - Solutions

MAT 351, Instructor: Alena Erchenko

1. (a) Solution. We show that the given rotations are not topologically conjugate. Assume, for contradiction, that the rotation $R_{\frac{2}{5}}: S^{1} \rightarrow S^{1}$ and $R_{\frac{1}{7}}: S^{1} \rightarrow S^{1}$ are topologically conjugate. Then, there exists a homeomorphism $h: S^{1} \rightarrow S^{1}$ such that $h \circ R_{\frac{2}{5}}=R_{\frac{1}{7}} \circ h$. Therefore, for any $n \in \mathbb{N}$ and $p \in S^{1}$ we have $h\left(R_{\frac{2}{5}}^{n}(p)\right)=R_{\frac{1}{7}}^{n}(h(p))$. Notice that for $R_{\frac{2}{5}}$ all points in S^{1} are periodic with prime period 5 but for $R_{\frac{1}{7}}$ none of the points in $S^{{ }^{5}}$ are periodic with period 5 (actually, all points are periodic with prime period 7). Thus, we obtain contradiction that topological conjugacy h exists as if it existed then $h(0)=h\left(R_{\frac{2}{5}}^{5}(0)\right)=R_{\frac{1}{7}}^{5}(h(0))$, i.e., $h(0)$ is periodic with period 5 for $R_{\frac{1}{7}}$.
(b) Solution. We show that f and g are not topologically conjugate. Assume, for contradiction, that they are topologically conjugate. Then, there exists a homeomorphism $h: \mathbb{R} \rightarrow \mathbb{R}$ such that $h \circ g=f \circ h$. Therefore, for any $n \in \mathbb{N}$ and $x \in \mathbb{R}$ we have $h\left(g^{n}(x)\right)=f^{n}(h(x))$. We have $g^{\prime}(x)=\frac{1}{3} \in(0,1)$ for all $x \in \mathbb{R}$ so g is contraction on \mathbb{R}. Also, notice that 0 is the unique fixed point of g on \mathbb{R}. Thus, by the contraction principle, for any $x \in \mathbb{R}$ we have $g^{n}(x) \rightarrow 0$ as $n \rightarrow \infty$ (notice that 0 is the unique fixed point of g). Therefore, for any $x \in \mathbb{R}$ we have $\lim _{n \rightarrow \infty} h\left(g^{n}(x)\right)=h(0)$ (because h is a continuous function) so $\lim _{n \rightarrow \infty} f^{n}(h(x))=h(0)$ contradicting the fact that $\lim _{n \rightarrow \infty} f^{n}\left(h\left(h^{-1}(1)\right)\right)=\lim _{n \rightarrow \infty} f^{n}(1)=\lim _{n \rightarrow \infty} 3^{n}=\infty$.
2. Solution. (a)

(b)

(c) Let the disk be given by $\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leq 1\right\}$. Notice that $\frac{1}{7 \pi}$ is irrational so the orbit of $\left(s, \frac{1}{7}\right)$ is dense in the annulus $\left\{(x, y) \in \mathbb{R}^{2} \left\lvert\, \cos \left(\frac{1}{7}\right) \leq x^{2}+y^{2} \leq 1\right.\right\}$.
3. Solution. Let the square be given in \mathbb{R}^{2} by $\{(x, y) \mid 0 \leq x \leq 1,0 \leq y \leq 1\}$.
(a) Let $n \in \mathbb{N} \backslash\{1\}$ be even so $n=2 k$ for some $k \in \mathbb{N}$. Then, look at the orbit of the billiard flow starting at the left bottom vertex $(0,0)$ of the square with the direction given by vector $(1,2 k-1)$ which will terminate at the right top vertex $(1,1)$ of the square. Then, the orbit of any point on $\{(0, y) \mid 0<y<1\}$ with the direction $(1,2 k-1)$ will be periodic with period $2(2 k-1)+2=4 k=2 n$.

To obtain orbit with period 8, i.e., for $n=4$, we have

(b) Let $n \in \mathbb{N} \backslash\{1\}$ be odd so $n=2 k+1$ for some $k \in \mathbb{N}$. Then, look at the orbit of the billiard flow starting at the left bottom vertex $(0,0)$ of the square with the direction given by vector $(1,2 k)$ which will terminate at the right bottom vertex $(1,0)$ of the square. Then, the orbit of any point on $\{(0, y) \mid 0<y<1\}$ with the direction $(1,2 k)$ will be periodic with period $2 k+1+2 k+1=2 n$.

4. Proof. Let fix $n \in \mathbb{N}$. There are infinitely many orbits with prime period $2 n$. If $n=1$, we have any point $\left(s, \frac{\pi}{2}\right)$ which is not a vertex of the square has prime period 2 where s is the length parameter on the boundary of the square. If $n>1$, then 1 and $n-1$ are relatively prime and $2 \cdot 1+2 \cdot(n-1)=2 n$. Let our square be given in \mathbb{R}^{2} by $\left\{(x, y) \in \mathbb{R}^{2} \mid 0 \leq x \leq 1,0 \leq y \leq 1\right\}$.

Then, for example, any point $(s, \arctan (n-1))$ with parameters s corresponding to the points $\left\{(x, y) \in \mathbb{R}^{2} \mid x=0\right.$ and $\left.0<y<1\right\}$ is periodic with prime period $2 n$. Notice that the line $y=y_{0}+(n-1) x$ in \mathbb{R}^{2} with $y_{0} \in(0,1)$ doesn't pass through the points in the tiling corresponding to the vertices of the square.
5. Solution. (a) There are no orbits with period 2 as such orbit should be orthogonal to two sides of the triangle but that would contradict the fact that sum of angles of a triangle in the plane is π.
(b) Triangle with angles $\frac{\pi}{2}, \frac{\pi}{4}$ and $\frac{\pi}{4}$ has to have two sides that are not hypotenuse having the same length $L=\frac{\text { length of hypotenuse }}{\sqrt{2}}$ as $\cos \left(\frac{\pi}{4}\right)=\sin \left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}$. If we reflect the triangle with respect to the hypotenuse, then we obtain obtain a square with sides of length L. Reflecting a square across a side corresponds to combination of reflections of the given triangle with respect to some sides. "Unfolding" of the square gives a tiling of the plane so "unfolding" of the given triangle gives a tiling of the plane.

Sample of the tiling:

(c)

(d)

(e) We can get "unfolding" to the torus by doing the following reflection until we obtain the
following pattern where the opposite parallel sides of the square are identified.

6. Solution. (a) $(0,0)$ is a periodic point of f if and only if there exists $n \in \mathbb{N}$ such that $f^{n}(0,0)=$ $(0,0)$, i.e., $(n \alpha, n \beta)=(0,0)(\bmod 1)$, meaning, $(n \alpha, n \beta)=(k, m)$ for some $k, m \in \mathbb{Z}$. Thus, $(0,0)$ is a periodic point of f if and only if α and β are rational numbers.
(b) No. Consider α being an irrational number and $\beta=0$. Then, the orbit of $(0,0)$ stays on the circle $\left\{(x, 0) \mid x \in S^{1}\right\}$ and fills it densely, so it is not periodic and is not dense in \mathbb{T}^{2}.
(c) Let $(x, y) \in \mathbb{T}^{2}$ and d is the distance function on \mathbb{T}^{2}.
$(0,0)$ has a dense orbit under f in \mathbb{T}^{2}
\Leftrightarrow
For any $\varepsilon>0$ for any $(a, b) \in \mathbb{T}^{2}$ there exists $N \in \mathbb{N}$ such that $d\left((a, b), f^{N}(0,0)\right)<\varepsilon$ \Leftrightarrow
For any $\varepsilon>0$ for any $(a, b) \in \mathbb{T}^{2}$ there exists $M \in \mathbb{N}$ such that $d\left((a-x, b-y), f^{M}(0,0)\right)<\varepsilon$ \Leftrightarrow
For any $\varepsilon>0$ for any $(a, b) \in \mathbb{T}^{2}$ there exists $M \in \mathbb{N}$ such that $d\left((a, b), f^{M}(x, y)\right)<\varepsilon$ \Leftrightarrow
(x, y) has a dense orbit under f in \mathbb{T}^{2}.

