Homework 6

MAT 351, Instructor: Alena Erchenko

1. For each given pair of dynamical systems, determine whether they are topologically conjugate or not. If they are topologically conjugate then give a formula for a topological conjugacy and prove that it is indeed a topological conjugacy. If not, explain why not.
Hint: Recall definition of a topological conjugacy and Homework 5 Problem 5.
(a) The rotations of the circle S^{1} by $\frac{2}{5}$ and $\frac{1}{7}$.
(b) $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=3 x$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ given by $g(x)=\frac{1}{3} x$.
2. Consider the billiard in the disc of radius 1 . No explanations are required.
(a) Sketch the orbit of $\left(s, \frac{\pi}{7}\right)$ for some s.
(b) Sketch the orbit of $\left(0, \frac{2 \pi}{7}\right)$ for some s.
(c) What can you say about the orbit of $\left(s, \frac{1}{7}\right)$ for any s ? You can use the fact that π is irrational.
3. Consider the billiard in the unit square. Suggest a way to obtain an orbit with prime period $2 n$ for $n \in \mathbb{N} \backslash\{1\}$ where
(a) n is even;
(b) n is odd.

You don't need to prove that your method indeed gives a periodic orbit of the required period.
Hint: Try to generalize the constructions for $n=2$ and $n=3$ in the lecture.
4. Consider the billiard in the unit square. Fix $n \in \mathbb{N}$. Explain if there are finitely (provide the number if it is the case) or infinitely many orbits with prime period $2 n$.
5. Consider the billiard in a triangle with angles $\frac{\pi}{2}, \frac{\pi}{4}$ and $\frac{\pi}{4}$.
(a) Explain why there are no orbit with period 2.
(b) Can you obtain a tiling of the plane by "unfolding" construction? Draw the tiling or explain why it doesn't exist.
(c) Draw an orbit of prime period 4 or explain why none exists.
(d) Draw an orbit of prime period 6 or explain why none exists.
(e) "Unfolding" to which surface can you obtain?
6. Let $(\alpha, \beta) \in \mathbb{R}^{2}$. Consider the translation $f: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ given by $f(x, y)=(x+\alpha, y+\beta)(\bmod 1)$.
(a) Continue the statement: $(0,0)$ is a periodic point of f if and only if α and $\beta \ldots$.. Explain your answer.
(b) Is it true that if $(0,0)$ is not periodic point for f, then its orbit is dense in \mathbb{T}^{2} ? Explain your answer.
(c) Prove that $(0,0)$ has a dense orbit under f in \mathbb{T}^{2} if and only if any $(x, y) \in \mathbb{T}^{2}$ has a dense orbit under f in \mathbb{T}^{2}.

