Homework 6

MAT 351, Instructor: Alena Erchenko

1. For each given pair of dynamical systems, determine whether they are topologically conjugate or not. If they are topologically conjugate then give a formula for a topological conjugacy and prove that it is indeed a topological conjugacy. If not, explain why not.

Hint: Recall definition of a topological conjugacy and Homework 5 Problem 5.

- (a) The rotations of the circle S^1 by $\frac{2}{5}$ and $\frac{1}{7}$.
- (b) $f: \mathbb{R} \to \mathbb{R}$ given by f(x) = 3x and $g: \mathbb{R} \to \mathbb{R}$ given by $g(x) = \frac{1}{3}x$.
- 2. Consider the billiard in the disc of radius 1. No explanations are required.
 - (a) Sketch the orbit of $(s, \frac{\pi}{7})$ for some s.
 - (b) Sketch the orbit of $(0, \frac{2\pi}{7})$ for some s.
 - (c) What can you say about the orbit of $(s, \frac{1}{7})$ for any s? You can use the fact that π is irrational.
- 3. Consider the billiard in the unit square. Suggest a way to obtain an orbit with prime period 2n for $n \in \mathbb{N} \setminus \{1\}$ where
 - (a) n is even;
 - (b) n is odd.

You don't need to prove that your method indeed gives a periodic orbit of the required period. <u>Hint</u>: Try to generalize the constructions for n = 2 and n = 3 in the lecture.

- 4. Consider the billiard in the unit square. Fix $n \in \mathbb{N}$. Explain if there are finitely (provide the number if it is the case) or infinitely many orbits with prime period 2n.
- 5. Consider the billiard in a triangle with angles $\frac{\pi}{2}$, $\frac{\pi}{4}$ and $\frac{\pi}{4}$.
 - (a) Explain why there are no orbit with period 2.
 - (b) Can you obtain a tiling of the plane by "unfolding" construction? Draw the tiling or explain why it doesn't exist.
 - (c) Draw an orbit of prime period 4 or explain why none exists.
 - (d) Draw an orbit of prime period 6 or explain why none exists.
 - (e) "Unfolding" to which surface can you obtain?

6. Let $(\alpha, \beta) \in \mathbb{R}^2$. Consider the translation $f \colon \mathbb{T}^2 \to \mathbb{T}^2$ given by $f(x, y) = (x + \alpha, y + \beta) \pmod{1}$.

- (a) Continue the statement: (0,0) is a periodic point of f if and only if α and β Explain your answer.
- (b) Is it true that if (0,0) is not periodic point for f, then its orbit is dense in \mathbb{T}^2 ? Explain your answer.
- (c) Prove that (0,0) has a dense orbit under f in \mathbb{T}^2 if and only if any $(x,y) \in \mathbb{T}^2$ has a dense orbit under f in \mathbb{T}^2 .