
Homework 7 - Solutions

MAT 351, Instructor: Alena Erchenko

1. (a) Solution. To find eigenvalues, we solve the equation

λ2 − 2λ+ 1 = 0, i.e. (λ− 1)2 = 0.

We obtain one eigenvalue λ = 1. Since the given matrix isn’t

(
1 0
0 1

)
. We obtain that

the given matrix is similar to B =

(
1 1
0 1

)
.

(b) Solution. To find eigenvalues, we solve the equation

λ2 − 5λ+ 6 = 0, i.e. (λ− 2)(λ− 3) = 0.

We obtain two distinct eigenvalues λ = 2 and µ = 3. We obtain that the given matrix is

similar to B =

(
2 0
0 3

)
.

(c) Solution. To find eigenvalues, we solve the equation

λ2 − 6λ+ 13 = 0.

There are no real eigenvalues as D = 62 − 4 · 13 = −16 < 0. The eigenvalues are complex
λ = 3 + 2i and µ = 3− 2i so it is similar to a multiple of a rotation. We obtain that the

given matrix is similar to B =
√

13

(
3√
13

−2√
13

2√
13

3√
13

)
= r

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
where r =

√
13

and tan(θ) = 3
2
.

2. Solution. (a) The system can rewritten as ˙̄x = Ax̄ where A =

(
3 1
0 3

)
. We have that A has

one eigenvalue 3 with one eigenvector up to a scalar multiple. Thus, the zero-solution is a
degenerate unstable node. The general solution is

x̄(t) = e3t(c2t+ c1)ē1 + c2e
3tē2 where c1, c2 ∈ R.

The other way to write is x(t) = e3t(c2t+ c1) and y(t) = c2e
3t where c1, c2 ∈ R.

The phase portrait is the following.



(b) The system can rewritten as ˙̄x = Ax̄ where A =

(
−4 −3
2 3

)
. To find eigenvalues, we solve

the equation
λ2 + λ− 6 = 0, i.e. (λ+ 3)(λ− 2) = 0.

We have that A has two distinct eigenvalues −3 and 2 with eigenvectors

(
3
−1

)
and(

1
−2

)
,respectively. Thus, the zero-solution is a saddle. We have

(
−3 0
0 2

)
= C−1AC

where C =

(
3 1
−1 −2

)
.The general solution is

x̄(t) = c1e
−3tCē1 + c2e

2tCē2 where c1, c2 ∈ R.

The other way to write is x(t) = 3c1e
−3t+c2e

2t and y(t) = −c1e−3t−2c2e
2t where c1, c2 ∈ R.

The phase portrait is the following.



3. Solution. (a) Since A and B are similar there exists an invertible matrix C such that B =
C−1AC. Let h(v̄) = Cv̄. Then, h has inverse h−1(v̄) = C−1v̄. Also, F ◦ h = h ◦ G as
CB = AC. We have that h is continuous as for C there exists r such that d(Cū, Cv̄) ≤

rd(ū, v̄) for all ū =

(
u1
u2

)
, v̄ =

(
v1
v2

)
∈ R2. Thus, for any ū ∈ R2 and any ε > 0 there

exists δ = ε
r
> 0 such that if v̄ ∈ R2 is such that d(ū, v̄) < δ then d(Cū, Cv̄) < ε so h is

continuous. Similarly, h−1 is continuous.

Therefore, F and G are topologically conjugate and h is a topological conjugacy.

(b) Let h(x) = sign(x)|x|α for all x ∈ R where α is such that b = aα. We have that

h ◦ f(x) = h(f(x)) = h(ax) = sign(ax)|ax|α = sign(x)aα|x|α

= sign(x)b|x|α because a > 0 and b = aα

= b sign(x)|x|α = g(h(x)) = g ◦ h(x).

Moreover, h is invertible with inverse h−1(x) = sign(x)|x|1/α as

h(h−1(x)) = sign
(
sign(x)|x|1/α

) ∣∣sign(x)|x|1/α
∣∣α = sign(x)

(
|x|1/α

)α
= sign(x)|x| = x

and
h−1(h(x)) = sign (sign(x)|x|α) |sign(x)|x|α|1/α = sign(x)|x| = x

for any x ∈ R.

We show that h is continuous. For any x > 0 there exists δ1 > 0 such that if |x− y| < δ1
then y > 0. Similarly, for x < 0 there exists δ2 > 0 such that if |x − y| < δ2 then y > 0.
Let x 6= 0. Then, using the previous observations and the continuity of |x|α on R, for any
ε > 0 there exists δ > 0 such that if |x− y| < δ then sign(x) = sign(y) and

|h(x)− h(y)| = |sign(x)|x|α − sign(y)|y|α| = ||x|α − |y|α| < ε.

Let x = 0 then from continuity of |x|α at x = 0 for any ε > 0 there exists δ > 0 such that
if |x− y| < δ then

|h(0)− h(y)| = |sign(y)|y|α| = |y|α = ||0|α − |y|α| < ε.

Similarly, we can show that h−1 is continuous.

Thus, f and g are topologically conjugate and h is a topological conjugacy.

(c) Let h

((
x
y

))
=

(
sign(x)x2

y3

)
for any x, y ∈ R.

We have that h ◦ F = G ◦ h because for any x, y ∈ R,

h(F

((
x
y

))
) = h

((
x
2
y
2

))
=

(
sign(x

2
)x

2

4
y3

8

)
=

(
sign(x)x

2

4
y3

8

)
= G(h

((
x
y

))
).

Let

(
x
y

)
∈ R2. Assume that d(

(
x
y

)
,

(
a
b

)
) < δ. Then,

√
(x− a)2 + (y − b)2 < δ so

|x − a| < δ and |y − b| < δ. Using the continuity of functions p(x) = sign(x)x2 and
r(x) = x3 on R, for any x, y ∈ R and any ε > 0 there exists δ such that



if |x− a| < δ then |sign(x)x2 − sign(a)a2| < ε
2

and

if |y − b| < δ then |y3 − b3| < ε
2
.

Then, for such choice of δ we have

d(h(

(
x
y

)
), h(

(
a
b

)
)) =

√
(sign(x)x2 − sign(a)a2)2 + (y3 − b3)2 <

√
ε2

2
< ε.

Therefore, h is continuous.

Notice that the inverse of h is h−1(

(
x
y

)
) =

(
sign(x)|x|1/2

y1/3

)
which is also continuous by

the argument similar to the continuity for h.

Therefore, F and G are topological conjugate and h is a topological conjugacy.

4. Solution. (a) From the lecture we have that the linear system has the solution x̄(t) =

(
c1e

λt

c2e
µt

)
where

(
c1
c2

)
= x̄(0). Thus,

f t(

(
x
y

)
) =

(
eλt 0
0 eµt

)(
x
y

)

so f 1(

(
x
y

)
) =

(
eλ 0
0 eµ

)(
x
y

)
so B =

(
eλ 0
0 eµ

)
.

(b) From the lecture we have that the linear system has the solution x̄(t) =

(
eλt(c2t+ c1)

c2e
λt

)
where

(
c1
c2

)
= x̄(0). Thus,

f t(

(
x
y

)
) =

(
eλt teλt

0 eλt

)(
x
y

)

so f 1(

(
x
y

)
) =

(
eλ eλ

0 eλ

)(
x
y

)
so B =

(
eλ eλ

0 eλ

)
.

(c) From the lecture we have that the linear system has the solution x̄(t) =

(
c1 cos(rt) + c2 sin(rt)
c1 sin(rt)− c2 cos(rt)

)
where

(
c1
−c2

)
= x̄(0). Thus,

f t(

(
x
y

)
) =

(
cos(rt) − sin(rt)
sin(rt) cos(rt)

)(
x
y

)

so f 1(

(
x
y

)
) =

(
cos(r) − sin(r)
sin(r) cos(r)

)(
x
y

)
so B =

(
cos(r) − sin(r)
sin(r) cos(r)

)
.



5. Solution. (a) Let t = Trace(A) and d = det(A). We have d = ±1 by the setting of the
problem. Since A has integer entries t ∈ Z. The eigenvalues of A are given by the formula
t±
√
t2−4d
2

. The eigenvalues will be rational if and only if t2 − 4d = s2 for some integer s
(recall that (t2− 4d) ∈ Z as t, d ∈ Z). Thus, t2− s2 = 4d = ±4 so either t, s are both even
or t, s are both odd.

Case 1: Assume t, s are both odd so t = 2l + 1 and s = 2m + 1 for some l,m ∈ Z. Then,
±4 = t2 − s2 = (2l + 1)2 − (2m + 1)2 so ±1 = l2 −m2 + (l −m) = (l −m)(l + m + 1)
so l −m and l + m + 1 divide 1. Since the only integers that divide 1 are ±1, we obtain
there are no integer solutions l and m.

Case 2: Assume t, s are both even so t = 2l and s = 2m for some l,m ∈ Z. Then,
±4 = t2 − s2 = 4l2 − 4m2 so ±1 = l2 −m2 = (l −m)(l + m) so l −m and l + m divide
1. Thus, the only possible solutions are (l = ±1 and m = 0) or (l = 0 and m = ±1) so
(t = ±2 and s = 0) or (t = 0 and s = ±2). That implies that eigenvalues of A can be only
±1.

Since A is hyperbolic, we obtain that the eigenvalues of A must be irrational.

(b) Let l be a line passing through (0, 0) spanned by an eigenvector of A. Notice that l 6=

{(0, y)|y ∈ R} as, otherwise,

(
0
1

)
is an eigenvector so A has form

(
a 0
c d

)
where a, c, d ∈ Z

so A has rational eigenvalues a and d which contradicts that A has irrational eigenvalues
(see the item 1). Therefore, we have l = {(x, y) ∈ R2|y = αx} for some α ∈ R.

First, we prove that l has a rational slope if and only if l ∩ Z2 6= {(0, 0)}.
If l = {(x, y)|y = p

q
x} where p ∈ Z and q ∈ Z \ {0}, then (q, p) ∈ l so (q, p) ∈ l ∩ Z2.

Since q 6= 0, l ∩ Z2 6= {(0, 0)}. Conversely, if (m,n) ∈ l ∩ Z2 \ {(0, 0)}, then (m,n) ∈ land
(m,n) 6= (0, 0). In particular, m 6= 0 as otherwise l = {(0, y)|y ∈ R} which is not the case.
Thus, we have n = αm, i.e., α = n

m
∈ Q.

Assume that l ∩ Z2 6= {(0, 0)}. Without loss of generality, let the direction of l be an
eigenvector corresponding to the eigenvalue λ such that |λ| < 1 (if not, replace A with
A−1). Notice that A(Z2) = Z2 because A has integer entries and invertible as det(A)
is equal to the product of eigenvalues so det(A) 6= 0. Since A(l) = l, we have that
A(l ∩ Z2) = l ∩ Z2. Since l ∩ Z2 6= {(0, 0)}, there exists a point (m,n) 6= (0, 0) in l ∩ Z2

closest to (0, 0). Then, A(m,n) ∈ l∩Z2 and, moreover, A(m,n) 6= (0, 0) as A is invertible
and (m,n) 6= (0, 0), and d(A(m,n), (0, 0)) = |λ|d((m,n), (0, 0)) as (m,n) ∈ l and l is
spanned by the eigenvector. Thus, since |λ| < 1, d(A(m,n), (0, 0)) < d((m,n), (0, 0)) and
A(m,n) ∈ l ∩ Z2 \ {(0, 0)} contradicting the fact that (m,n) ∈ l ∩ Z2 \ {(0, 0)} was the
closest to (0, 0). Hence, l ∩ Z2 = {(0, 0)} so l has an irrational slope.


