Homework 7 - Solutions

MAT 351, Instructor: Alena Erchenko

1. (a) Solution. To find eigenvalues, we solve the equation

M2\ +1=0, ie. (A—1)2=0.
. : . : ..., (10 :
We obtain one eigenvalue A = 1. Since the given matrix isn’t (O 1). We obtain that

the given matrix is similar to B = (é 1) [

(b) Solution. To find eigenvalues, we solve the equation
M -5 +6=0, ie (A—2)(A—3)=0.

We obtain two distinct eigenvalues A = 2 and 4 = 3. We obtain that the given matrix is
similar to B = (2 0).
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(c) Solution. To find eigenvalues, we solve the equation
A’ —6A+13 =0.
There are no real eigenvalues as D = 62 — 4-13 = —16 < 0. The eigenvalues are complex

A =34 2iand p =3 — 2¢ so it is similar to a multiple of a rotation. We obtain that the
3 -2 .
given matrix is similar to B = /13 \/Qﬁ’ \/;3 =r (cgs(z) smé@)) where r = /13
W lRvE sin(f)  cos(0)
and tan(g) = 3.
O

é . We have that A has
one eigenvalue 3 with one eigenvector up to a scalar multiple. Thus, the zero-solution is a
degenerate unstable node. The general solution is

2. Solution. (a) The system can rewritten as & = AT where A = g

T(t) = *(cot + ¢1)E1 + cae®'ey where c1,co € R,

The other way to write is z(t) = €3 (cat + ¢1) and y(t) = coe® where ¢;, o € R.
The phase portrait is the following.
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(b) The system can rewritten as 7 = AT where A = < 5 3

> . To find eigenvalues, we solve

the equation
MEA-6=0, ie. (A+3)(A—2)=0.

We have that A has two distinct eigenvalues —3 and 2 with eigenvectors (_31> and

(_12) srespectively. Thus, the zero-solution is a saddle. We have <_03 g) = C'AC
3 1 .
where C' = 1 9 .The general solution is
T(t) = e 'Ce; + cpe®'Cey where  ¢1,¢0 € R.
The other way to write is z(t) = 3cie 3t +coe?® and y(t) = —cre ™3 —2cye? where ¢y, ¢y € R.

The phase portrait is the following.




3. Solution. (a) Since A and B are similar there exists an invertible matrix C' such that B =

C7'AC. Let h(v) = Cv. Then, h has inverse h™1(v) = C~'o. Also, Foh = hoG as
CB = AC. We have that h is continuous as for C' there exists r such that d(Cu,Cv) <

rd(i,v) for all u = (Zl>, = (21) € R2. Thus, for any 4 € R? and any ¢ > 0 there
2 2

exists § = £ > 0 such that if o € R? is such that d(a,v) < § then d(Cu,C7) < € so h is
continuous. Similarly, h~! is continuous.

Therefore, F' and GG are topologically conjugate and h is a topological conjugacy.
Let h(x) = sign(x)|z|* for all x € R where « is such that b = a®*. We have that
ho f(x) = h(f(x)) = hlax) = sign(az)|az|® = sign(x)a®|z[®
= sign(x)b|z|* because a >0 and b=a”
— bsign(a)|2]” = g(h(x)) = g o h(z).

1/a

Moreover, h is invertible with inverse h=!(z) = sign(z)|z|"/* as

h(h™'(x)) = sign (sz’gn(:v)]x\l/a) !sign(a:)|x\1/°“a = sign(x) (|x\1/”)a = sign(z)|z| =z

and
1/a

B (h(x)) = sign (sign(x)la|*) |sign(z)[2]*]* = sign(x)|e| = 2

for any = € R.

We show that h is continuous. For any = > 0 there exists ¢; > 0 such that if |z —y| < 0,
then y > 0. Similarly, for x < 0 there exists do > 0 such that if |x — y| < d2 then y > 0.
Let = # 0. Then, using the previous observations and the continuity of |z|* on R, for any
e > 0 there exists § > 0 such that if |z — y| < ¢ then sign(x) = sign(y) and

|h(x) = h(y)| = [sign(z)|z[* — sign(y)ly|"| = [|2]* — |y <e.

Let © = 0 then from continuity of |z|* at x = 0 for any € > 0 there exists 6 > 0 such that
if |z — y| < 0 then

[7(0) = h(y)| = [sign(y)ly|*| = [y|* = [10]* = [y|*| <e.

Similarly, we can show that A~! is continuous.
Thus, f and g are topologically conjugate and h is a topological conjugacy.
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Let h ((‘;)) = (szgny(gx)x ) for any z,y € R.

We have that h o F' = G o h because for any z,y € R,

e () =4(0) = (%) - (%) e ()

Let (2) € R?. Assume that d( <:;) , (Z)) < 6. Then, \/(z—a)>+ (y—b)2 < § so

2
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|z —a] < 6 and |y — b| < §. Using the continuity of functions p(z) = sign(x)z® and

r(z) = 23 on R, for any z,y € R and any € > 0 there exists ¢ such that



if |z — a| < 4 then |sign(z)x?

— sign(a)a®| < §
and
if |y — b < 4§ then [y* —b*| < 5.

Then, for such choice of § we have

e2

atn () (§)) = v Gign(a1s? = sign(@ @+ 7 9 <[5 <=

Therefore, h is continuous.

Notice that the inverse of h is h%(i)) — (Szgn

the argument similar to the continuity for h.

1/2
?(ﬁ/);lx’ ) which is also continuous by

Therefore, F' and G are topological conjugate and h is a topological conjugacy.
O
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4. Solution. (a) From the lecture we have that the linear system has the solution z(t) = (Cle )

coett

where (?) = 7(0). Thus,
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From the lecture we have that the linear system has the solution Z(t) = < v

where (01) = Z(0). Thus,

G- )6
(- 2 ()= G 2)

From the lecture we have that the linear system has the solution z(t) = c1eo s(rt) + cosin(rt)
¢y sin(rt) — cq cos(rt)
where ( “ ) = 2(0). Thus,

=
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(e —miet) (1)

= ()= (0 i) ()= (G o)



5. Solution. (a) Let t = Trace(A) and d = det(A). We have d = £1 by the setting of the

problem. Since A has integer entries ¢t € Z. The eigenvalues of A are given by the formula

EEVEZAd - The eigenvalues will be rational if and only if 2 — 4d = s? for some integer s
(recall that (t* —4d) € Z as t,d € Z). Thus, t* — s* = 4d = 44 so either ¢, s are both even

or t, s are both odd.

Case 1: Assume t, s are both odd so t =2/ + 1 and s = 2m + 1 for some [,m € Z. Then,
=1 -s2=020+1) - Cm+1)2so+l =P -m*+{U-m)=(1-—m)(l+m+1)
sol—m and [ +m + 1 divide 1. Since the only integers that divide 1 are 1, we obtain
there are no integer solutions [ and m.

Case 2: Assume t,s are both even so t = 2/ and s = 2m for some [,m € Z. Then,
t4 =12 -2 =4 —4dm?so £1 =12 —m? = (I —m)(l +m) so | —m and [ + m divide
1. Thus, the only possible solutions are (I = £1 and m = 0) or (I = 0 and m = £1) so
(t =22and s =0) or (t =0 and s = £2). That implies that eigenvalues of A can be only
+1.

Since A is hyperbolic, we obtain that the eigenvalues of A must be irrational.

Let [ be a line passing through (0,0) spanned by an eigenvector of A. Notice that [ #
0 0
1 d
so A has rational eigenvalues a and d which contradicts that A has irrational eigenvalues
(see the item 1). Therefore, we have | = {(x,y) € R*|y = az} for some o € R.

First, we prove that [ has a rational slope if and only if I N Z? # {(0,0)}.

It 1 = {(z,y)ly = Lz} where p € Z and q € Z \ {0}, then (¢,p) € I so (¢,p) € INZ>.
Since ¢ # 0, INZ* # {(0,0)}. Conversely, if (m,n) € INZ*\ {(0,0)}, then (m,n) € land
(m,n) # (0,0). In particular, m # 0 as otherwise [ = {(0,y)|y € R} which is not the case.
Thus, we have n = am, ie., a == € Q.

Assume that [ NZ? # {(0,0)}. Without loss of generality, let the direction of [ be an
eigenvector corresponding to the eigenvalue A such that |[A\| < 1 (if not, replace A with
A7), Notice that A(Z?) = Z* because A has integer entries and invertible as det(A)
is equal to the product of eigenvalues so det(A) # 0. Since A(l) = [, we have that
A(INZ* =1N7Z% Since INZ* # {(0,0)}, there exists a point (m,n) # (0,0) in I N Z?
closest to (0,0). Then, A(m,n) € INZ?* and, moreover, A(m,n) # (0,0) as A is invertible
and (m,n) # (0,0), and d(A(m,n),(0,0)) = |Ald((m,n),(0,0)) as (m,n) € [ and [ is
spanned by the eigenvector. Thus, since |A| < 1, d(A(m,n),(0,0)) < d((m,n), (0,0)) and
A(m,n) € INZ?\ {(0,0)} contradicting the fact that (m,n) € INZ*\ {(0,0)} was the
closest to (0,0). Hence, [N Z* = {(0,0)} so [ has an irrational slope.

{(0,y)|y € R} as, otherwise, is an eigenvector so A has form where a,c¢,d € Z

]



