Homework 7 - Solutions

MAT 351, Instructor: Alena Erchenko

1. (a) Solution. To find eigenvalues, we solve the equation

$$
\lambda^{2}-2 \lambda+1=0, \quad \text { i.e. } \quad(\lambda-1)^{2}=0
$$

We obtain one eigenvalue $\lambda=1$. Since the given matrix isn't $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$. We obtain that the given matrix is similar to $B=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$.
(b) Solution. To find eigenvalues, we solve the equation

$$
\lambda^{2}-5 \lambda+6=0, \quad \text { i.e. } \quad(\lambda-2)(\lambda-3)=0 .
$$

We obtain two distinct eigenvalues $\lambda=2$ and $\mu=3$. We obtain that the given matrix is similar to $B=\left(\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right)$.
(c) Solution. To find eigenvalues, we solve the equation

$$
\lambda^{2}-6 \lambda+13=0
$$

There are no real eigenvalues as $D=6^{2}-4 \cdot 13=-16<0$. The eigenvalues are complex $\lambda=3+2 i$ and $\mu=3-2 i$ so it is similar to a multiple of a rotation. We obtain that the given matrix is similar to $B=\sqrt{13}\left(\begin{array}{cc}\frac{3}{\sqrt{13}} & \frac{-2}{\sqrt{13}} \\ \frac{2}{\sqrt{13}} & \frac{3}{\sqrt{13}}\end{array}\right)=r\left(\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right)$ where $r=\sqrt{13}$ and $\tan (\theta)=\frac{3}{2}$.
2. Solution. (a) The system can rewritten as $\dot{\bar{x}}=A \bar{x}$ where $A=\left(\begin{array}{ll}3 & 1 \\ 0 & 3\end{array}\right)$. We have that A has one eigenvalue 3 with one eigenvector up to a scalar multiple. Thus, the zero-solution is a degenerate unstable node. The general solution is

$$
\bar{x}(t)=e^{3 t}\left(c_{2} t+c_{1}\right) \bar{e}_{1}+c_{2} e^{3 t} \bar{e}_{2} \quad \text { where } \quad c_{1}, c_{2} \in \mathbb{R}
$$

The other way to write is $x(t)=e^{3 t}\left(c_{2} t+c_{1}\right)$ and $y(t)=c_{2} e^{3 t}$ where $c_{1}, c_{2} \in \mathbb{R}$.
The phase portrait is the following.

(b) The system can rewritten as $\dot{\bar{x}}=A \bar{x}$ where $A=\left(\begin{array}{cc}-4 & -3 \\ 2 & 3\end{array}\right)$. To find eigenvalues, we solve the equation

$$
\lambda^{2}+\lambda-6=0, \quad \text { i.e. } \quad(\lambda+3)(\lambda-2)=0 .
$$

We have that A has two distinct eigenvalues -3 and 2 with eigenvectors $\binom{3}{-1}$ and $\binom{1}{-2}$,respectively. Thus, the zero-solution is a saddle. We have $\left(\begin{array}{cc}-3 & 0 \\ 0 & 2\end{array}\right)=C^{-1} A C$ where $C=\left(\begin{array}{cc}3 & 1 \\ -1 & -2\end{array}\right)$.The general solution is

$$
\bar{x}(t)=c_{1} e^{-3 t} C \bar{e}_{1}+c_{2} e^{2 t} C \bar{e}_{2} \quad \text { where } \quad c_{1}, c_{2} \in \mathbb{R}
$$

The other way to write is $x(t)=3 c_{1} e^{-3 t}+c_{2} e^{2 t}$ and $y(t)=-c_{1} e^{-3 t}-2 c_{2} e^{2 t}$ where $c_{1}, c_{2} \in \mathbb{R}$. The phase portrait is the following.

3. Solution. (a) Since A and B are similar there exists an invertible matrix C such that $B=$ $C^{-1} A C$. Let $h(\bar{v})=C \bar{v}$. Then, h has inverse $h^{-1}(\bar{v})=C^{-1} \bar{v}$. Also, $F \circ h=h \circ G$ as $C B=A C$. We have that h is continuous as for C there exists r such that $d(C \bar{u}, C \bar{v}) \leq$ $r d(\bar{u}, \bar{v})$ for all $\bar{u}=\binom{u_{1}}{u_{2}}, \bar{v}=\binom{v_{1}}{v_{2}} \in \mathbb{R}^{2}$. Thus, for any $\bar{u} \in \mathbb{R}^{2}$ and any $\varepsilon>0$ there exists $\delta=\frac{\varepsilon}{r}>0$ such that if $\bar{v} \in \mathbb{R}^{2}$ is such that $d(\bar{u}, \bar{v})<\delta$ then $d(C \bar{u}, C \bar{v})<\varepsilon$ so h is continuous. Similarly, h^{-1} is continuous.
Therefore, F and G are topologically conjugate and h is a topological conjugacy.
(b) Let $h(x)=\operatorname{sign}(x)|x|^{\alpha}$ for all $x \in \mathbb{R}$ where α is such that $b=a^{\alpha}$. We have that

$$
\begin{aligned}
h \circ f(x) & =h(f(x))=h(a x)=\operatorname{sign}(a x)|a x|^{\alpha}=\operatorname{sign}(x) a^{\alpha}|x|^{\alpha} \\
& =\operatorname{sign}(x) b|x|^{\alpha} \quad \text { because } \quad a>0 \quad \text { and } \quad b=a^{\alpha} \\
& =b \operatorname{sign}(x)|x|^{\alpha}=g(h(x))=g \circ h(x) .
\end{aligned}
$$

Moreover, h is invertible with inverse $h^{-1}(x)=\operatorname{sign}(x)|x|^{1 / \alpha}$ as

$$
h\left(h^{-1}(x)\right)=\left.\left.\operatorname{sign}\left(\operatorname{sign}(x)|x|^{1 / \alpha}\right)|\operatorname{sign}(x)| x\right|^{1 / \alpha}\right|^{\alpha}=\operatorname{sign}(x)\left(|x|^{1 / \alpha}\right)^{\alpha}=\operatorname{sign}(x)|x|=x
$$

and

$$
h^{-1}(h(x))=\left.\left.\operatorname{sign}\left(\operatorname{sign}(x)|x|^{\alpha}\right)|\operatorname{sign}(x)| x\right|^{\alpha}\right|^{1 / \alpha}=\operatorname{sign}(x)|x|=x
$$

for any $x \in \mathbb{R}$.
We show that h is continuous. For any $x>0$ there exists $\delta_{1}>0$ such that if $|x-y|<\delta_{1}$ then $y>0$. Similarly, for $x<0$ there exists $\delta_{2}>0$ such that if $|x-y|<\delta_{2}$ then $y>0$. Let $x \neq 0$. Then, using the previous observations and the continuity of $|x|^{\alpha}$ on \mathbb{R}, for any $\varepsilon>0$ there exists $\delta>0$ such that if $|x-y|<\delta$ then $\operatorname{sign}(x)=\operatorname{sign}(y)$ and

$$
|h(x)-h(y)|=\left.|\operatorname{sign}(x)| x\right|^{\alpha}-\operatorname{sign}(y)|y|^{\alpha}\left|=\left||x|^{\alpha}-|y|^{\alpha}\right|<\varepsilon .\right.
$$

Let $x=0$ then from continuity of $|x|^{\alpha}$ at $x=0$ for any $\varepsilon>0$ there exists $\delta>0$ such that if $|x-y|<\delta$ then

$$
|h(0)-h(y)|=\left.|\operatorname{sign}(y)| y\right|^{\alpha}\left|=|y|^{\alpha}=\left||0|^{\alpha}-|y|^{\alpha}\right|<\varepsilon\right.
$$

Similarly, we can show that h^{-1} is continuous.
Thus, f and g are topologically conjugate and h is a topological conjugacy.
(c) Let $h\left(\binom{x}{y}\right)=\binom{\operatorname{sign}(x) x^{2}}{y^{3}}$ for any $x, y \in \mathbb{R}$.

We have that $h \circ F=G \circ h$ because for any $x, y \in \mathbb{R}$,

$$
h\left(F\left(\binom{x}{y}\right)\right)=h\left(\binom{\frac{x}{2}}{\frac{y}{2}}\right)=\binom{\operatorname{sign}\left(\frac{x}{2}\right) \frac{x^{2}}{4}}{\frac{y^{3}}{8}}=\binom{\operatorname{sign}(x) \frac{x^{2}}{4}}{\frac{y^{3}}{8}}=G\left(h\left(\binom{x}{y}\right)\right) .
$$

Let $\binom{x}{y} \in \mathbb{R}^{2}$. Assume that $d\left(\binom{x}{y},\binom{a}{b}\right)<\delta$. Then, $\sqrt{(x-a)^{2}+(y-b)^{2}}<\delta$ so $|x-a|<\delta$ and $|y-b|<\delta$. Using the continuity of functions $p(x)=\operatorname{sign}(x) x^{2}$ and $r(x)=x^{3}$ on \mathbb{R}, for any $x, y \in \mathbb{R}$ and any $\varepsilon>0$ there exists δ such that
if $|x-a|<\delta$ then $\left|\operatorname{sign}(x) x^{2}-\operatorname{sign}(a) a^{2}\right|<\frac{\varepsilon}{2}$
and
if $|y-b|<\delta$ then $\left|y^{3}-b^{3}\right|<\frac{\varepsilon}{2}$.
Then, for such choice of δ we have

$$
d\left(h\left(\binom{x}{y}\right), h\left(\binom{a}{b}\right)\right)=\sqrt{\left(\operatorname{sign}(x) x^{2}-\operatorname{sign}(a) a^{2}\right)^{2}+\left(y^{3}-b^{3}\right)^{2}}<\sqrt{\frac{\varepsilon^{2}}{2}}<\varepsilon
$$

Therefore, h is continuous.
Notice that the inverse of h is $\left.h^{-1}\binom{x}{y}\right)=\binom{\operatorname{sign}(x)|x|^{1 / 2}}{y^{1 / 3}}$ which is also continuous by the argument similar to the continuity for h.
Therefore, F and G are topological conjugate and h is a topological conjugacy.
4. Solution. (a) From the lecture we have that the linear system has the solution $\bar{x}(t)=\binom{c_{1} e^{\lambda t}}{c_{2} e^{\mu t}}$ where $\binom{c_{1}}{c_{2}}=\bar{x}(0)$. Thus,

$$
f^{t}\left(\binom{x}{y}\right)=\left(\begin{array}{cc}
e^{\lambda t} & 0 \\
0 & e^{\mu t}
\end{array}\right)\binom{x}{y}
$$

so $f^{1}\left(\binom{x}{y}\right)=\left(\begin{array}{cc}e^{\lambda} & 0 \\ 0 & e^{\mu}\end{array}\right)\binom{x}{y}$ so $B=\left(\begin{array}{cc}e^{\lambda} & 0 \\ 0 & e^{\mu}\end{array}\right)$.
(b) From the lecture we have that the linear system has the solution $\bar{x}(t)=\binom{e^{\lambda t}\left(c_{2} t+c_{1}\right)}{c_{2} e^{\lambda t}}$ where $\binom{c_{1}}{c_{2}}=\bar{x}(0)$. Thus,

$$
\begin{gathered}
f^{t}\left(\binom{x}{y}\right)=\left(\begin{array}{cc}
e^{\lambda t} & t e^{\lambda t} \\
0 & e^{\lambda t}
\end{array}\right)\binom{x}{y} \\
\text { so } f^{1}\left(\binom{x}{y}\right)=\left(\begin{array}{cc}
e^{\lambda} & e^{\lambda} \\
0 & e^{\lambda}
\end{array}\right)\binom{x}{y} \text { so } B=\left(\begin{array}{cc}
e^{\lambda} & e^{\lambda} \\
0 & e^{\lambda}
\end{array}\right) .
\end{gathered}
$$

(c) From the lecture we have that the linear system has the solution $\bar{x}(t)=\binom{c_{1} \cos (r t)+c_{2} \sin (r t)}{c_{1} \sin (r t)-c_{2} \cos (r t)}$ where $\binom{c_{1}}{-c_{2}}=\bar{x}(0)$. Thus,

$$
\begin{gathered}
f^{t}\left(\binom{x}{y}\right)=\left(\begin{array}{cc}
\cos (r t) & -\sin (r t) \\
\sin (r t) & \cos (r t)
\end{array}\right)\binom{x}{y} \\
\text { so } f^{1}\left(\binom{x}{y}\right)=\left(\begin{array}{cc}
\cos (r) & -\sin (r) \\
\sin (r) & \cos (r)
\end{array}\right)\binom{x}{y} \text { so } B=\left(\begin{array}{cc}
\cos (r) & -\sin (r) \\
\sin (r) & \cos (r)
\end{array}\right) .
\end{gathered}
$$

5. Solution. (a) Let $t=\operatorname{Trace}(A)$ and $d=\operatorname{det}(A)$. We have $d= \pm 1$ by the setting of the problem. Since A has integer entries $t \in \mathbb{Z}$. The eigenvalues of A are given by the formula $\frac{t \pm \sqrt{t^{2}-4 d}}{2}$. The eigenvalues will be rational if and only if $t^{2}-4 d=s^{2}$ for some integer s (recall that $\left(t^{2}-4 d\right) \in \mathbb{Z}$ as $t, d \in \mathbb{Z}$). Thus, $t^{2}-s^{2}=4 d= \pm 4$ so either t, s are both even or t, s are both odd.
Case 1: Assume t, s are both odd so $t=2 l+1$ and $s=2 m+1$ for some $l, m \in \mathbb{Z}$. Then, $\pm 4=t^{2}-s^{2}=(2 l+1)^{2}-(2 m+1)^{2}$ so $\pm 1=l^{2}-m^{2}+(l-m)=(l-m)(l+m+1)$ so $l-m$ and $l+m+1$ divide 1 . Since the only integers that divide 1 are ± 1, we obtain there are no integer solutions l and m.
Case 2: Assume t, s are both even so $t=2 l$ and $s=2 m$ for some $l, m \in \mathbb{Z}$. Then, $\pm 4=t^{2}-s^{2}=4 l^{2}-4 m^{2}$ so $\pm 1=l^{2}-m^{2}=(l-m)(l+m)$ so $l-m$ and $l+m$ divide 1. Thus, the only possible solutions are $(l= \pm 1$ and $m=0)$ or $(l=0$ and $m= \pm 1)$ so $(t= \pm 2$ and $s=0)$ or $(t=0$ and $s= \pm 2)$. That implies that eigenvalues of A can be only ± 1.
Since A is hyperbolic, we obtain that the eigenvalues of A must be irrational.
(b) Let l be a line passing through $(0,0)$ spanned by an eigenvector of A. Notice that $l \neq$ $\{(0, y) \mid y \in \mathbb{R}\}$ as, otherwise, $\binom{0}{1}$ is an eigenvector so A has form $\left(\begin{array}{ll}a & 0 \\ c & d\end{array}\right)$ where $a, c, d \in \mathbb{Z}$ so A has rational eigenvalues a and d which contradicts that A has irrational eigenvalues (see the item 1). Therefore, we have $l=\left\{(x, y) \in \mathbb{R}^{2} \mid y=\alpha x\right\}$ for some $\alpha \in \mathbb{R}$.
First, we prove that l has a rational slope if and only if $l \cap \mathbb{Z}^{2} \neq\{(0,0)\}$.
If $l=\left\{(x, y) \left\lvert\, y=\frac{p}{q} x\right.\right\}$ where $p \in \mathbb{Z}$ and $q \in \mathbb{Z} \backslash\{0\}$, then $(q, p) \in l$ so $(q, p) \in l \cap \mathbb{Z}^{2}$. Since $q \neq 0, l \cap \mathbb{Z}^{2} \neq\{(0,0)\}$. Conversely, if $(m, n) \in l \cap \mathbb{Z}^{2} \backslash\{(0,0)\}$, then $(m, n) \in l$ land $(m, n) \neq(0,0)$. In particular, $m \neq 0$ as otherwise $l=\{(0, y) \mid y \in \mathbb{R}\}$ which is not the case. Thus, we have $n=\alpha m$, i.e., $\alpha=\frac{n}{m} \in \mathbb{Q}$.
Assume that $l \cap \mathbb{Z}^{2} \neq\{(0,0)\}$. Without loss of generality, let the direction of l be an eigenvector corresponding to the eigenvalue λ such that $|\lambda|<1$ (if not, replace A with $\left.A^{-1}\right)$. Notice that $A\left(\mathbb{Z}^{2}\right)=\mathbb{Z}^{2}$ because A has integer entries and invertible as $\operatorname{det}(A)$ is equal to the product of eigenvalues so $\operatorname{det}(A) \neq 0$. Since $A(l)=l$, we have that $A\left(l \cap \mathbb{Z}^{2}\right)=l \cap \mathbb{Z}^{2}$. Since $l \cap \mathbb{Z}^{2} \neq\{(0,0)\}$, there exists a point $(m, n) \neq(0,0)$ in $l \cap \mathbb{Z}^{2}$ closest to $(0,0)$. Then, $A(m, n) \in l \cap \mathbb{Z}^{2}$ and, moreover, $A(m, n) \neq(0,0)$ as A is invertible and $(m, n) \neq(0,0)$, and $d(A(m, n),(0,0))=|\lambda| d((m, n),(0,0))$ as $(m, n) \in l$ and l is spanned by the eigenvector. Thus, since $|\lambda|<1, d(A(m, n),(0,0))<d((m, n),(0,0))$ and $A(m, n) \in l \cap \mathbb{Z}^{2} \backslash\{(0,0)\}$ contradicting the fact that $(m, n) \in l \cap \mathbb{Z}^{2} \backslash\{(0,0)\}$ was the closest to $(0,0)$. Hence, $l \cap \mathbb{Z}^{2}=\{(0,0)\}$ so l has an irrational slope.
