Homework 7 - Solutions

MAT 351, Instructor: Alena Erchenko

1. (a) Solution. To find eigenvalues, we solve the equation

$$\lambda^2 - 2\lambda + 1 = 0$$
, i.e. $(\lambda - 1)^2 = 0$.

We obtain one eigenvalue $\lambda = 1$. Since the given matrix isn't $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. We obtain that the given matrix is similar to $B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

(b) Solution. To find eigenvalues, we solve the equation

$$\lambda^2 - 5\lambda + 6 = 0$$
, i.e. $(\lambda - 2)(\lambda - 3) = 0$.

We obtain two distinct eigenvalues $\lambda = 2$ and $\mu = 3$. We obtain that the given matrix is similar to $B = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$.

(c) Solution. To find eigenvalues, we solve the equation

$$\lambda^2 - 6\lambda + 13 = 0.$$

There are no real eigenvalues as $D = 6^2 - 4 \cdot 13 = -16 < 0$. The eigenvalues are complex $\lambda = 3 + 2i$ and $\mu = 3 - 2i$ so it is similar to a multiple of a rotation. We obtain that the given matrix is similar to $B = \sqrt{13} \begin{pmatrix} \frac{3}{\sqrt{13}} & \frac{-2}{\sqrt{13}} \\ \frac{2}{\sqrt{13}} & \frac{3}{\sqrt{13}} \end{pmatrix} = r \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$ where $r = \sqrt{13}$ and $\tan(\theta) = \frac{3}{2}$.

2. Solution. (a) The system can rewritten as $\dot{\bar{x}} = A\bar{x}$ where $A = \begin{pmatrix} 3 & 1 \\ 0 & 3 \end{pmatrix}$. We have that A has one eigenvalue 3 with one eigenvector up to a scalar multiple. Thus, the zero-solution is a degenerate unstable node. The general solution is

$$\bar{x}(t) = e^{3t}(c_2t + c_1)\bar{e}_1 + c_2e^{3t}\bar{e}_2$$
 where $c_1, c_2 \in \mathbb{R}$.

The other way to write is $x(t) = e^{3t}(c_2t + c_1)$ and $y(t) = c_2e^{3t}$ where $c_1, c_2 \in \mathbb{R}$. The phase portrait is the following.

(b) The system can rewritten as $\dot{\bar{x}} = A\bar{x}$ where $A = \begin{pmatrix} -4 & -3 \\ 2 & 3 \end{pmatrix}$. To find eigenvalues, we solve the equation

$$\lambda^{2} + \lambda - 6 = 0$$
, i.e. $(\lambda + 3)(\lambda - 2) = 0$.

We have that A has two distinct eigenvalues -3 and 2 with eigenvectors $\begin{pmatrix} 3 \\ -1 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ -2 \end{pmatrix}$, respectively. Thus, the zero-solution is a saddle. We have $\begin{pmatrix} -3 & 0 \\ 0 & 2 \end{pmatrix} = C^{-1}AC$ where $C = \begin{pmatrix} 3 & 1 \\ -1 & -2 \end{pmatrix}$. The general solution is $\bar{x}(t) = c_1 e^{-3t} C \bar{e}_1 + c_2 e^{2t} C \bar{e}_2$ where $c_1, c_2 \in \mathbb{R}$.

The other way to write is $x(t) = 3c_1e^{-3t} + c_2e^{2t}$ and $y(t) = -c_1e^{-3t} - 2c_2e^{2t}$ where $c_1, c_2 \in \mathbb{R}$. The phase portrait is the following.

3. Solution. (a) Since A and B are similar there exists an invertible matrix C such that $B = C^{-1}AC$. Let $h(\bar{v}) = C\bar{v}$. Then, h has inverse $h^{-1}(\bar{v}) = C^{-1}\bar{v}$. Also, $F \circ h = h \circ G$ as CB = AC. We have that h is continuous as for C there exists r such that $d(C\bar{u}, C\bar{v}) \leq rd(\bar{u}, \bar{v})$ for all $\bar{u} = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$, $\bar{v} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \in \mathbb{R}^2$. Thus, for any $\bar{u} \in \mathbb{R}^2$ and any $\varepsilon > 0$ there exists $\delta = \frac{\varepsilon}{r} > 0$ such that if $\bar{v} \in \mathbb{R}^2$ is such that $d(\bar{u}, \bar{v}) < \delta$ then $d(C\bar{u}, C\bar{v}) < \varepsilon$ so h is continuous. Similarly, h^{-1} is continuous.

Therefore, F and G are topologically conjugate and h is a topological conjugacy.

(b) Let $h(x) = sign(x)|x|^{\alpha}$ for all $x \in \mathbb{R}$ where α is such that $b = a^{\alpha}$. We have that

$$\begin{aligned} h \circ f(x) &= h(f(x)) = h(ax) = sign(ax)|ax|^{\alpha} = sign(x)a^{\alpha}|x|^{\alpha} \\ &= sign(x)b|x|^{\alpha} \quad \text{because} \quad a > 0 \quad \text{and} \quad b = a^{\alpha} \\ &= b sign(x)|x|^{\alpha} = g(h(x)) = g \circ h(x). \end{aligned}$$

Moreover, h is invertible with inverse $h^{-1}(x) = sign(x)|x|^{1/\alpha}$ as

$$h(h^{-1}(x)) = sign\left(sign(x)|x|^{1/\alpha}\right) \left|sign(x)|x|^{1/\alpha}\right|^{\alpha} = sign(x)\left(|x|^{1/\alpha}\right)^{\alpha} = sign(x)|x| = x$$

and

$$h^{-1}(h(x)) = sign\left(sign(x)|x|^{\alpha}\right)|sign(x)|x|^{\alpha}|^{1/\alpha} = sign(x)|x| = x$$

for any $x \in \mathbb{R}$.

We show that h is continuous. For any x > 0 there exists $\delta_1 > 0$ such that if $|x - y| < \delta_1$ then y > 0. Similarly, for x < 0 there exists $\delta_2 > 0$ such that if $|x - y| < \delta_2$ then y > 0. Let $x \neq 0$. Then, using the previous observations and the continuity of $|x|^{\alpha}$ on \mathbb{R} , for any $\varepsilon > 0$ there exists $\delta > 0$ such that if $|x - y| < \delta$ then sign(x) = sign(y) and

$$|h(x) - h(y)| = |sign(x)|x|^{\alpha} - sign(y)|y|^{\alpha}| = ||x|^{\alpha} - |y|^{\alpha}| < \varepsilon.$$

Let x = 0 then from continuity of $|x|^{\alpha}$ at x = 0 for any $\varepsilon > 0$ there exists $\delta > 0$ such that if $|x - y| < \delta$ then

$$|h(0) - h(y)| = |sign(y)|y|^{\alpha}| = |y|^{\alpha} = ||0|^{\alpha} - |y|^{\alpha}| < \varepsilon.$$

Similarly, we can show that h^{-1} is continuous.

Thus, f and g are topologically conjugate and h is a topological conjugacy.

(c) Let
$$h\left(\begin{pmatrix} x\\ y \end{pmatrix}\right) = \begin{pmatrix} sign(x)x^2\\ y^3 \end{pmatrix}$$
 for any $x, y \in \mathbb{R}$.
We have that $h \circ F = G \circ h$ because for any $x, y \in \mathbb{R}$,

$$h(F\left(\begin{pmatrix}x\\y\end{pmatrix}\right)) = h\left(\begin{pmatrix}\frac{x}{2}\\\frac{y}{2}\end{pmatrix}\right) = \begin{pmatrix}sign(\frac{x}{2})\frac{x^2}{4}\\\frac{y^3}{8}\end{pmatrix} = \begin{pmatrix}sign(x)\frac{x^2}{4}\\\frac{y^3}{8}\end{pmatrix} = G(h\left(\begin{pmatrix}x\\y\end{pmatrix}\right)).$$

Let $\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2$. Assume that $d(\begin{pmatrix} x \\ y \end{pmatrix}, \begin{pmatrix} a \\ b \end{pmatrix}) < \delta$. Then, $\sqrt{(x-a)^2 + (y-b)^2} < \delta$ so $|x-a| < \delta$ and $|y-b| < \delta$. Using the continuity of functions $p(x) = sign(x)x^2$ and $r(x) = x^3$ on \mathbb{R} , for any $x, y \in \mathbb{R}$ and any $\varepsilon > 0$ there exists δ such that

if $|x-a| < \delta$ then $|sign(x)x^2 - sign(a)a^2| < \frac{\varepsilon}{2}$ and

if $|y-b| < \delta$ then $|y^3 - b^3| < \frac{\varepsilon}{2}$.

Then, for such choice of δ we have

$$d(h(\binom{x}{y}), h(\binom{a}{b})) = \sqrt{(sign(x)x^2 - sign(a)a^2)^2 + (y^3 - b^3)^2} < \sqrt{\frac{\varepsilon^2}{2}} < \varepsilon.$$

Therefore, h is continuous.

Notice that the inverse of h is $h^{-1}\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} sign(x)|x|^{1/2} \\ y^{1/3} \end{pmatrix}$ which is also continuous by the argument similar to the continuity for h.

Therefore, F and G are topological conjugate and h is a topological conjugacy.

4. Solution. (a) From the lecture we have that the linear system has the solution $\bar{x}(t) = \begin{pmatrix} c_1 e^{\lambda t} \\ c_2 e^{\mu t} \end{pmatrix}$ where $\begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \bar{x}(0)$. Thus, $f^t(\begin{pmatrix} x \\ y \end{pmatrix}) = \begin{pmatrix} e^{\lambda t} & 0 \\ 0 & e^{\mu t} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$ so $f^1(\begin{pmatrix} x \\ y \end{pmatrix}) = \begin{pmatrix} e^{\lambda} & 0 \\ 0 & e^{\mu} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$ so $B = \begin{pmatrix} e^{\lambda} & 0 \\ 0 & e^{\mu} \end{pmatrix}$. (b) From the lecture we have that the linear system has the solution $\bar{x}(t) = \begin{pmatrix} e^{\lambda t}(c_2 t + c_1) \\ c_2 e^{\lambda t} \end{pmatrix}$

where
$$\binom{c_1}{c_2} = \bar{x}(0)$$
. Thus,
 $f^t \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} e^{\lambda t} & te^{\lambda t} \\ 0 & e^{\lambda t} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$
so $f^1 \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} e^{\lambda} & e^{\lambda} \\ 0 & e^{\lambda} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$ so $B = \begin{pmatrix} e^{\lambda} & e^{\lambda} \\ 0 & e^{\lambda} \end{pmatrix}$.
(c) From the lecture we have that the linear system has the solution $\bar{x}(t) = \begin{pmatrix} c_1 \cos(rt) + c_2 \sin(rt) \\ c_1 \sin(rt) & c_2 \sin(rt) \end{pmatrix}$

c) From the lecture we have that the linear system has the solution $\bar{x}(t) = \begin{pmatrix} c_1 \cos(rt) + c_2 \sin(rt) \\ c_1 \sin(rt) - c_2 \cos(rt) \end{pmatrix}$ where $\begin{pmatrix} c_1 \\ -c_2 \end{pmatrix} = \bar{x}(0)$. Thus, $f^t(\begin{pmatrix} x \\ y \end{pmatrix}) = \begin{pmatrix} \cos(rt) & -\sin(rt) \\ \sin(rt) & \cos(rt) \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$ so $f^1(\begin{pmatrix} x \\ y \end{pmatrix}) = \begin{pmatrix} \cos(r) & -\sin(r) \\ \sin(r) & \cos(r) \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$ so $B = \begin{pmatrix} \cos(r) & -\sin(r) \\ \sin(r) & \cos(r) \end{pmatrix}$. 5. Solution. (a) Let t = Trace(A) and d = det(A). We have $d = \pm 1$ by the setting of the problem. Since A has integer entries $t \in \mathbb{Z}$. The eigenvalues of A are given by the formula $\frac{t\pm\sqrt{t^2-4d}}{2}$. The eigenvalues will be rational if and only if $t^2 - 4d = s^2$ for some integer s (recall that $(t^2 - 4d) \in \mathbb{Z}$ as $t, d \in \mathbb{Z}$). Thus, $t^2 - s^2 = 4d = \pm 4$ so either t, s are both even or t, s are both odd.

<u>Case 1:</u> Assume t, s are both odd so t = 2l + 1 and s = 2m + 1 for some $l, m \in \mathbb{Z}$. Then, $\pm 4 = t^2 - s^2 = (2l + 1)^2 - (2m + 1)^2$ so $\pm 1 = l^2 - m^2 + (l - m) = (l - m)(l + m + 1)$ so l - m and l + m + 1 divide 1. Since the only integers that divide 1 are ± 1 , we obtain there are no integer solutions l and m.

<u>Case 2:</u> Assume t, s are both even so t = 2l and s = 2m for some $l, m \in \mathbb{Z}$. Then, $\pm 4 = t^2 - s^2 = 4l^2 - 4m^2$ so $\pm 1 = l^2 - m^2 = (l - m)(l + m)$ so l - m and l + m divide 1. Thus, the only possible solutions are $(l = \pm 1 \text{ and } m = 0)$ or $(l = 0 \text{ and } m = \pm 1)$ so $(t = \pm 2 \text{ and } s = 0)$ or $(t = 0 \text{ and } s = \pm 2)$. That implies that eigenvalues of A can be only ± 1 .

Since A is hyperbolic, we obtain that the eigenvalues of A must be irrational.

(b) Let l be a line passing through (0,0) spanned by an eigenvector of A. Notice that $l \neq \{(0,y)|y \in \mathbb{R}\}$ as, otherwise, $\begin{pmatrix} 0\\1 \end{pmatrix}$ is an eigenvector so A has form $\begin{pmatrix} a & 0\\c & d \end{pmatrix}$ where $a, c, d \in \mathbb{Z}$ so A has rational eigenvalues a and d which contradicts that A has irrational eigenvalues (see the item 1). Therefore, we have $l = \{(x,y) \in \mathbb{R}^2 | y = \alpha x\}$ for some $\alpha \in \mathbb{R}$.

First, we prove that l has a rational slope if and only if $l \cap \mathbb{Z}^2 \neq \{(0,0)\}$.

If $l = \{(x, y) | y = \frac{p}{q}x\}$ where $p \in \mathbb{Z}$ and $q \in \mathbb{Z} \setminus \{0\}$, then $(q, p) \in l$ so $(q, p) \in l \cap \mathbb{Z}^2$. Since $q \neq 0, l \cap \mathbb{Z}^2 \neq \{(0, 0)\}$. Conversely, if $(m, n) \in l \cap \mathbb{Z}^2 \setminus \{(0, 0)\}$, then $(m, n) \in l$ and $(m, n) \neq (0, 0)$. In particular, $m \neq 0$ as otherwise $l = \{(0, y) | y \in \mathbb{R}\}$ which is not the case. Thus, we have $n = \alpha m$, i.e., $\alpha = \frac{n}{m} \in \mathbb{Q}$.

Assume that $l \cap \mathbb{Z}^2 \neq \{(0,0)\}$. Without loss of generality, let the direction of l be an eigenvector corresponding to the eigenvalue λ such that $|\lambda| < 1$ (if not, replace A with A^{-1}). Notice that $A(\mathbb{Z}^2) = \mathbb{Z}^2$ because A has integer entries and invertible as det(A) is equal to the product of eigenvalues so det $(A) \neq 0$. Since A(l) = l, we have that $A(l \cap \mathbb{Z}^2) = l \cap \mathbb{Z}^2$. Since $l \cap \mathbb{Z}^2 \neq \{(0,0)\}$, there exists a point $(m,n) \neq (0,0)$ in $l \cap \mathbb{Z}^2$ closest to (0,0). Then, $A(m,n) \in l \cap \mathbb{Z}^2$ and, moreover, $A(m,n) \neq (0,0)$ as A is invertible and $(m,n) \neq (0,0)$, and $d(A(m,n),(0,0)) = |\lambda|d((m,n),(0,0))$ as $(m,n) \in l$ and l is spanned by the eigenvector. Thus, since $|\lambda| < 1$, d(A(m,n),(0,0)) < d((m,n),(0,0)) and $A(m,n) \in l \cap \mathbb{Z}^2 \setminus \{(0,0)\}$ contradicting the fact that $(m,n) \in l \cap \mathbb{Z}^2 \setminus \{(0,0)\}$ was the closest to (0,0). Hence, $l \cap \mathbb{Z}^2 = \{(0,0)\}$ so l has an irrational slope.

	_	