Homework 7

MAT 351, Instructor: Alena Erchenko

1. For each of the following matrices A, find a "model" matrix B such that A is similar to B. If B is a scalar multiple of a rotation matrix then determine its parameters θ and r. Show your work.
(a) $\left(\begin{array}{cc}2 & 1 \\ -1 & 0\end{array}\right)$;
(b) $\left(\begin{array}{cc}1 & -2 \\ 1 & 4\end{array}\right)$;
(c) $\left(\begin{array}{cc}3 & -2 \\ 2 & 3\end{array}\right)$.
2. Find the solutions of the following linear systems, sketch the phase portraits, and determine the type of the zero-solution.
(a)

$$
\begin{aligned}
\dot{x} & =3 x+y \\
\dot{y} & =3 y .
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \dot{x}=-4 x-3 y \\
& \dot{y}=2 x+3 y .
\end{aligned}
$$

3. For each given pair of dynamical systems, show that they are topologically conjugate. Explain your answer.
(a) $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ and $G: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $F(\bar{v})=A \bar{v}$ and $G(\bar{v})=B \bar{v}$ where A and B are similar 2×2 matrices.
Hint: Recall that the distance on \mathbb{R}^{2} is defined in the following way $d\left(\binom{u_{1}}{u_{2}},\binom{v_{1}}{v_{2}}\right)=$ $\sqrt{\left(u_{1}-v_{1}\right)^{2}+\left(u_{2}-v_{2}\right)^{2}}$. You can use the fact that for any 2×2 matrix D there exists a constant r such that $d(D \bar{u}, D \bar{v}) \leq r d(\bar{u}, \bar{v})$ for all $\bar{u}=\binom{u_{1}}{u_{2}}, \bar{v}=\binom{v_{1}}{v_{2}} \in \mathbb{R}^{2}$.
(b) $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=a x$ and $g(x)=b x$, where $0<a<b<1$.

Hint: Consider $h: \mathbb{R} \rightarrow \mathbb{R}$ given by $h(x)=\operatorname{sign}(x)|x|^{\alpha}$ where α is such that $b=a^{\alpha}$ and $\operatorname{sign}(x)=\left\{\begin{array}{lll}1 & \text { if } & x>0 \\ 0 & \text { if } & x=0 \\ -1 & & \text { if } \\ x<0\end{array}\right.$. .You can use the fact that $|x|^{l}$ where $l>0$ is a continuous function on \mathbb{R}.
(c) $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ and $G: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $F(\bar{v})=\left(\begin{array}{cc}\frac{1}{2} & 0 \\ 0 & \frac{1}{2}\end{array}\right) \bar{v}$ and $G(\bar{v})=\left(\begin{array}{cc}\frac{1}{4} & 0 \\ 0 & \frac{1}{8}\end{array}\right) \bar{v}$. Hint: Use the previous item.
4. Consider a flow $f^{t}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by the linear system $\dot{\bar{x}}=A \bar{x}$ where A is one of the following "model" matrices. Determine the matrix B for the time-one-map $f^{1}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that $f^{1}(\bar{x})=B \bar{x}$.
(a) $\left(\begin{array}{ll}\lambda & 0 \\ 0 & \mu\end{array}\right)$ where $\lambda, \mu \in \mathbb{R}$;
(b) $\left(\begin{array}{ll}\lambda & 1 \\ 0 & \lambda\end{array}\right)$ where $\lambda \in \mathbb{R}$;
(c) $\left(\begin{array}{cc}0 & -r \\ r & 0\end{array}\right)$ where $r>0$.
5. We say that a 2×2 matrix A is hyperbolic if it has two distinct eigenvalues λ and μ such that $0<|\mu|<1<|\lambda|$. Let A be a 2×2 hyperbolic matrix with integer entries and determinant ± 1. Show that
(a) The eigenvalues of A are irrational;
(b) (optional) The eigenvectors of A have irrational slopes.

Hint: Let l be a line spanned by an eigenvector of A passing through (0,0).
i. Prove that that a line l has rational slope if and only if $l \cap \mathbb{Z}^{2} \neq\{(0,0)\}$.
ii. Prove that for a line l we have $A\left(l \cap \mathbb{Z}^{2}\right)=l \cap \mathbb{Z}^{2}$.

