
Homework 8 - Solutions

MAT 351, Instructor: Alena Erchenko

1. Solution. We have ˙sin(t) = cos(t) and ˙cos(t) = − sin(t) = − sin(t)+(1−sin2(t)−cos2(t)) cos(t),
using the trigonometric identity sin2(t) + cos2(t) = 1. Thus, x(t) = sin(t) and y(t) = cos(t) is a
solution of the system. Geometrically, the trajectory starts at the point (0, 1) at time t = 0 and
moves clockwise around the unit circle centered at (0, 0) as x2(t) + y2(t) = 1 for all t ∈ R.

2. (a) Solution. To find equilibrium states, we need to solve the system of equations x − y =
0, x2 − 4 = 0. The second equation gives us that x = ±2 and the first equation gives
us that y = x. Thus, the equilibrium states are (2, 2) and (−2, 2).

The Jacobian matrix at (x, y) is A(x, y) =

(
1 −1

2x 0

)
.

We have A(2, 2) =

(
1 −1
4 0

)
so the characteristic equation is λ2 − λ + 4 = 0 so it does

not have real eigenvalue, but it has complex eigenvalues λ = 1±i
√
15

2
. Since Re(λ) = 1

2
> 0

and the eigenvalues are complex, we have that (2, 2) is an unstable spiral.

We have A(−2,−2) =

(
1 −1
−4 0

)
so the characteristic equation is λ2 − λ− 4 = 0 so the

eigenvalues are λ = 1+
√
17

2
and µ = 1−

√
17

2
. Since λ > 0 and µ < 0, we have that (−2,−2)

is a saddle point.

(b) Solution. To find equilibrium states, we need to solve the system of equations sin(y) =
0, cos(x) = 0. We obtain y = πk where k ∈ Z and x = π

2
+ πm where m ∈ Z. Thus,

the equilibrium states are (π
2

+ πm, πk) where m, k ∈ Z.

The Jacobian matrix at (x, y) is A(x, y) =

(
0 cos(y)

− sin(x) 0

)
.

We have A(π
2

+ πm, πk) =

(
0 (−1)k

(−1)m+1 0

)
so the characteristic equation is λ2 +

(−1)k+m+1 = 0 so if k + m = 2l for some l ∈ Z then the eigenvalues are ±1 and if
k+m = 2l+1 for some l ∈ Z then there are no real eigenvalues and the complex eigenvalues
are ±i. Thus, the equilibrium states (π

2
+ πm, πk) where m, k ∈ Z and m+ k is even are

saddle points, and the other equilibrium states we cannot classify as the linearized system
predicts center which is a “borderline case”.

(c) Solution. To find equilibrium states, we need to solve the system of equations xy − 1 =
0, x− y3 = 0. The second equation gives us that x = y3 so the first equation gives us
that y4 = 1 so y = ±1 and x = y3. Thus, the equilibrium states are (1, 1) and (−1,−1).

The Jacobian matrix at (x, y) is A(x, y) =

(
y x
1 −3y2

)
.



We have A(1, 1) =

(
1 1
1 −3

)
so the characteristic equation is λ2 + 2λ − 4 = 0 so the

eigenvalues are 1 ±
√

5. Since the eigenvalues are distinct amd have different signs, we
have that (1, 1) is a saddle point.

We have A(−1,−1) =

(
−1 −1
1 −3

)
so the characteristic equation is λ2 + 4λ + 4 = 0 so

(λ+ 2)2 = 0 so there is one real eigenvalue −2. Since there is only one eigenvalue and the
matrix is not diagonal, we cannot classify (−1,−1) from the linear system we obtain that
it corresponds to degenerate stable node which is a “borderline case”.

3. Solution. (a) To find equilibrium states, we need to solve the system of equations y3 − 4x =
0, y3 − y − 3x = 0. The first equation gives us that x = 1

4
y3 so the second equation

gives us that y3 − 4y = 0 so y(y − 2)(y + 2) = 0 so y = 0 or y = 2 or y = −2. Thus, the
equilibrium states are (0, 0), (2, 2) and (−2,−2).

The Jacobian matrix at (x, y) is A(x, y) =

(
−4 3y2

−3 3y2 − 1

)
.

We have A(0, 0) =

(
−4 0
−3 −1

)
so the eigenvalues are −4 and −1. Since the eigenvalues

are distinct negative numbers, we have that (0, 0) is a stable node.

We have A(2, 2) =

(
−4 12
−3 11

)
so the characteristic equation is λ2 − 7λ − 8 = 0, i.e.,

(λ − 8)(λ + 1) = 0 the eigenvalues are 8 and −1. Since the eigenvalues are of different
sign, we have that (2, 2) is a saddle point.

We have A(−2,−2) =

(
−4 12
−3 11

)
= A(2, 2) so we have that (−2,−2) is a saddle point.

(b) d
dt

(x − y) = y3 − 4x − (y3 − y − 3x) = y − x = 0 at points with x = y so x − y = 0, i.e.,
x = y, is an invariant line.

(c) d
dt

(x−y) = −(x−y) so x(t)−y(t) = Ce−t for some constant C ∈ R where C = x(0)−y(0).
Thus, if x(0) 6= y(0) so we are not on the line x = y, then lim

t→∞
|x(t)−y(t)| = lim

t→∞
|C|e−t = 0.

(d) To sketch the phase portrait, we would like to find eigenvectors of A(2, 2) = A(−2,−2).

An eigenvector for 8 is

(
1
1

)
. An eigenvector for −1 is

(
4
1

)
. We also would like to find

eigenvectors of A(0, 0). An eigenvector for −4 is

(
1
1

)
, and an eigenvector for −1 is

(
0
1

)
.

See the picture of the phase portrait at the end of the homework solutions.

4. Solution. The circle rotations are not structurally stable. Consider Rα : S1 → S1 given by
Rα(x) = x + α (mod 1) for x ∈ S1. If α ∈ Q, then all orbits of Rα are periodic and if
α ∈ R \Q, then all orbits are dense. For any ε > 0 there exists β ∈ R \Q and γ ∈ Q such that
|β − α| < ε and |γ − α| < ε. Thus, for any α we can find rotation on S1 arbitrarily C1-close to
Rα with the different orbit behavior (all orbits periodic vs all orbits dense) so they cannot be
topologically conjugate. Therefore, Rα is not structurally stable.



5. Proof. Let f : X → X be a continuous map. Assume x ∈ X is recurrent for f so x = lim
k→∞

fnk(x)

for some subsequence (nk) such that nk → ∞ as k → ∞. Then, f(x) = f( lim
k→∞

fnk(x)) =

lim
k→∞

f(fnk(x)) as f is a continuous function. Thus, f(x) = lim
k→∞

fnk+1(x) so f(x) is recurrent

for f .

6. Proof. Let X ⊂ R be a closed interval and f : X → X is a λ-contraction (where 0 < λ < 1).
Since f is a contraction, by the Contraction principle, there exists a unique c ∈ X such that
f(c) = c and for every x ∈ X and n ∈ N we have d(fn(x), c) ≤ λnd(x, c).

Let x ∈ X be such that f(x) 6= x, i.e., x 6= c. Let ε = (1−λ)d(x,c)
2

> 0. By the triangle inequality
d(x, c) ≤ d(x, fn(x)) + d(fn(x), c). Thus, for any n ∈ N we have

d(fn(x), x) ≥ d(x, c)− d(fn(x), c) ≥ d(x, c)− λnd(x, c) = (1− λn)d(x, c) ≥ (1− λ)d(x, c) > ε.

Therefore, no point in X, except for the fixed point, is recurrent.

The phase portrait for Problem 3d.
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