Homework 8 - Solutions

MAT 351, Instructor: Alena Erchenko

1. Solution. We have $\sin (t)=\cos (t)$ and $\cos (t)=-\sin (t)=-\sin (t)+\left(1-\sin ^{2}(t)-\cos ^{2}(t)\right) \cos (t)$, using the trigonometric identity $\sin ^{2}(t)+\cos ^{2}(t)=1$. Thus, $x(t)=\sin (t)$ and $y(t)=\cos (t)$ is a solution of the system. Geometrically, the trajectory starts at the point $(0,1)$ at time $t=0$ and moves clockwise around the unit circle centered at $(0,0)$ as $x^{2}(t)+y^{2}(t)=1$ for all $t \in \mathbb{R}$.
2. (a) Solution. To find equilibrium states, we need to solve the system of equations $x-y=$ $0, \quad x^{2}-4=0$. The second equation gives us that $x= \pm 2$ and the first equation gives us that $y=x$. Thus, the equilibrium states are $(2,2)$ and $(-2,2)$.
The Jacobian matrix at (x, y) is $A(x, y)=\left(\begin{array}{cc}1 & -1 \\ 2 x & 0\end{array}\right)$.
We have $A(2,2)=\left(\begin{array}{cc}1 & -1 \\ 4 & 0\end{array}\right)$ so the characteristic equation is $\lambda^{2}-\lambda+4=0$ so it does not have real eigenvalue, but it has complex eigenvalues $\lambda=\frac{1 \pm i \sqrt{15}}{2}$. Since $\operatorname{Re}(\lambda)=\frac{1}{2}>0$ and the eigenvalues are complex, we have that $(2,2)$ is an unstable spiral.
We have $A(-2,-2)=\left(\begin{array}{cc}1 & -1 \\ -4 & 0\end{array}\right)$ so the characteristic equation is $\lambda^{2}-\lambda-4=0$ so the eigenvalues are $\lambda=\frac{1+\sqrt{17}}{2}$ and $\mu=\frac{1-\sqrt{17}}{2}$. Since $\lambda>0$ and $\mu<0$, we have that $(-2,-2)$ is a saddle point.
(b) Solution. To find equilibrium states, we need to solve the system of equations $\sin (y)=$ $0, \quad \cos (x)=0$. We obtain $y=\pi k$ where $k \in \mathbb{Z}$ and $x=\frac{\pi}{2}+\pi m$ where $m \in \mathbb{Z}$. Thus, the equilibrium states are $\left(\frac{\pi}{2}+\pi m, \pi k\right)$ where $m, k \in \mathbb{Z}$.
The Jacobian matrix at (x, y) is $A(x, y)=\left(\begin{array}{cc}0 & \cos (y) \\ -\sin (x) & 0\end{array}\right)$.
We have $A\left(\frac{\pi}{2}+\pi m, \pi k\right)=\left(\begin{array}{cc}0 & (-1)^{k} \\ (-1)^{m+1} & 0\end{array}\right)$ so the characteristic equation is $\lambda^{2}+$ $(-1)^{k+m+1}=0$ so if $k+m=2 l$ for some $l \in \mathbb{Z}$ then the eigenvalues are ± 1 and if $k+m=2 l+1$ for some $l \in \mathbb{Z}$ then there are no real eigenvalues and the complex eigenvalues are $\pm i$. Thus, the equilibrium states $\left(\frac{\pi}{2}+\pi m, \pi k\right)$ where $m, k \in \mathbb{Z}$ and $m+k$ is even are saddle points, and the other equilibrium states we cannot classify as the linearized system predicts center which is a "borderline case".
(c) Solution. To find equilibrium states, we need to solve the system of equations $x y-1=$ $0, \quad x-y^{3}=0$. The second equation gives us that $x=y^{3}$ so the first equation gives us that $y^{4}=1$ so $y= \pm 1$ and $x=y^{3}$. Thus, the equilibrium states are $(1,1)$ and $(-1,-1)$.
The Jacobian matrix at (x, y) is $A(x, y)=\left(\begin{array}{cc}y & x \\ 1 & -3 y^{2}\end{array}\right)$.

We have $A(1,1)=\left(\begin{array}{cc}1 & 1 \\ 1 & -3\end{array}\right)$ so the characteristic equation is $\lambda^{2}+2 \lambda-4=0$ so the eigenvalues are $1 \pm \sqrt{5}$. Since the eigenvalues are distinct amd have different signs, we have that $(1,1)$ is a saddle point.
We have $A(-1,-1)=\left(\begin{array}{cc}-1 & -1 \\ 1 & -3\end{array}\right)$ so the characteristic equation is $\lambda^{2}+4 \lambda+4=0$ so $(\lambda+2)^{2}=0$ so there is one real eigenvalue -2 . Since there is only one eigenvalue and the matrix is not diagonal, we cannot classify $(-1,-1)$ from the linear system we obtain that it corresponds to degenerate stable node which is a "borderline case".
3. Solution. (a) To find equilibrium states, we need to solve the system of equations $y^{3}-4 x=$ $0, \quad y^{3}-y-3 x=0$. The first equation gives us that $x=\frac{1}{4} y^{3}$ so the second equation gives us that $y^{3}-4 y=0$ so $y(y-2)(y+2)=0$ so $y=0$ or $y=2$ or $y=-2$. Thus, the equilibrium states are $(0,0),(2,2)$ and $(-2,-2)$.
The Jacobian matrix at (x, y) is $A(x, y)=\left(\begin{array}{cc}-4 & 3 y^{2} \\ -3 & 3 y^{2}-1\end{array}\right)$.
We have $A(0,0)=\left(\begin{array}{cc}-4 & 0 \\ -3 & -1\end{array}\right)$ so the eigenvalues are -4 and -1 . Since the eigenvalues are distinct negative numbers, we have that $(0,0)$ is a stable node.
We have $A(2,2)=\left(\begin{array}{ll}-4 & 12 \\ -3 & 11\end{array}\right)$ so the characteristic equation is $\lambda^{2}-7 \lambda-8=0$, i.e., $(\lambda-8)(\lambda+1)=0$ the eigenvalues are 8 and -1 . Since the eigenvalues are of different sign, we have that $(2,2)$ is a saddle point.
We have $A(-2,-2)=\left(\begin{array}{ll}-4 & 12 \\ -3 & 11\end{array}\right)=A(2,2)$ so we have that $(-2,-2)$ is a saddle point.
(b) $\frac{d}{d t}(x-y)=y^{3}-4 x-\left(y^{3}-y-3 x\right)=y-x=0$ at points with $x=y$ so $x-y=0$, i.e., $x=y$, is an invariant line.
(c) $\frac{d}{d t}(x-y)=-(x-y)$ so $x(t)-y(t)=C e^{-t}$ for some constant $C \in \mathbb{R}$ where $C=x(0)-y(0)$. Thus, if $x(0) \neq y(0)$ so we are not on the line $x=y$, then $\lim _{t \rightarrow \infty}|x(t)-y(t)|=\lim _{t \rightarrow \infty}|C| e^{-t}=0$.
(d) To sketch the phase portrait, we would like to find eigenvectors of $A(2,2)=A(-2,-2)$. An eigenvector for 8 is $\binom{1}{1}$. An eigenvector for -1 is $\binom{4}{1}$. We also would like to find eigenvectors of $A(0,0)$. An eigenvector for -4 is $\binom{1}{1}$, and an eigenvector for -1 is $\binom{0}{1}$. See the picture of the phase portrait at the end of the homework solutions.
4. Solution. The circle rotations are not structurally stable. Consider $R_{\alpha}: S^{1} \rightarrow S^{1}$ given by $R_{\alpha}(x)=x+\alpha(\bmod 1)$ for $x \in S^{1}$. If $\alpha \in \mathbb{Q}$, then all orbits of R_{α} are periodic and if $\alpha \in \mathbb{R} \backslash \mathbb{Q}$, then all orbits are dense. For any $\varepsilon>0$ there exists $\beta \in \mathbb{R} \backslash \mathbb{Q}$ and $\gamma \in \mathbb{Q}$ such that $|\beta-\alpha|<\varepsilon$ and $|\gamma-\alpha|<\varepsilon$. Thus, for any α we can find rotation on S^{1} arbitrarily C^{1}-close to R_{α} with the different orbit behavior (all orbits periodic vs all orbits dense) so they cannot be topologically conjugate. Therefore, R_{α} is not structurally stable.
5. Proof. Let $f: X \rightarrow X$ be a continuous map. Assume $x \in X$ is recurrent for f so $x=\lim _{k \rightarrow \infty} f^{n_{k}}(x)$ for some subsequence $\left(n_{k}\right)$ such that $n_{k} \rightarrow \infty$ as $k \rightarrow \infty$. Then, $f(x)=f\left(\lim _{k \rightarrow \infty} f^{n_{k}}(x)\right)=$ $\lim _{k \rightarrow \infty} f\left(f^{n_{k}}(x)\right)$ as f is a continuous function. Thus, $f(x)=\lim _{k \rightarrow \infty} f^{n_{k}+1}(x)$ so $f(x)$ is recurrent for f.
6. Proof. Let $X \subset \mathbb{R}$ be a closed interval and $f: X \rightarrow X$ is a λ-contraction (where $0<\lambda<1$). Since f is a contraction, by the Contraction principle, there exists a unique $c \in X$ such that $f(c)=c$ and for every $x \in X$ and $n \in \mathbb{N}$ we have $d\left(f^{n}(x), c\right) \leq \lambda^{n} d(x, c)$.
Let $x \in X$ be such that $f(x) \neq x$, i.e., $x \neq c$. Let $\varepsilon=\frac{(1-\lambda) d(x, c)}{2}>0$. By the triangle inequality $d(x, c) \leq d\left(x, f^{n}(x)\right)+d\left(f^{n}(x), c\right)$. Thus, for any $n \in \mathbb{N}$ we have
$d\left(f^{n}(x), x\right) \geq d(x, c)-d\left(f^{n}(x), c\right) \geq d(x, c)-\lambda^{n} d(x, c)=\left(1-\lambda^{n}\right) d(x, c) \geq(1-\lambda) d(x, c)>\varepsilon$.
Therefore, no point in X, except for the fixed point, is recurrent.
The phase portrait for Problem 3d.

