Homework 8 - Solutions

MAT 351, Instructor: Alena Erchenko

- 1. Solution. We have $\sin(t) = \cos(t)$ and $\cos(t) = -\sin(t) = -\sin(t) + (1 \sin^2(t) \cos^2(t))\cos(t)$, using the trigonometric identity $\sin^2(t) + \cos^2(t) = 1$. Thus, $x(t) = \sin(t)$ and $y(t) = \cos(t)$ is a solution of the system. Geometrically, the trajectory starts at the point (0, 1) at time t = 0 and moves clockwise around the unit circle centered at (0, 0) as $x^2(t) + y^2(t) = 1$ for all $t \in \mathbb{R}$. \Box
- 2. (a) Solution. To find equilibrium states, we need to solve the system of equations x y = 0, $x^2 4 = 0$. The second equation gives us that $x = \pm 2$ and the first equation gives us that y = x. Thus, the equilibrium states are (2, 2) and (-2, 2).

The Jacobian matrix at (x, y) is $A(x, y) = \begin{pmatrix} 1 & -1 \\ 2x & 0 \end{pmatrix}$.

We have $A(2,2) = \begin{pmatrix} 1 & -1 \\ 4 & 0 \end{pmatrix}$ so the characteristic equation is $\lambda^2 - \lambda + 4 = 0$ so it does not have real eigenvalue, but it has complex eigenvalues $\lambda = \frac{1 \pm i\sqrt{15}}{2}$. Since $Re(\lambda) = \frac{1}{2} > 0$ and the eigenvalues are complex, we have that (2,2) is an unstable spiral.

We have $A(-2, -2) = \begin{pmatrix} 1 & -1 \\ -4 & 0 \end{pmatrix}$ so the characteristic equation is $\lambda^2 - \lambda - 4 = 0$ so the eigenvalues are $\lambda = \frac{1+\sqrt{17}}{2}$ and $\mu = \frac{1-\sqrt{17}}{2}$. Since $\lambda > 0$ and $\mu < 0$, we have that (-2, -2) is a saddle point.

(b) Solution. To find equilibrium states, we need to solve the system of equations $\sin(y) = 0$, $\cos(x) = 0$. We obtain $y = \pi k$ where $k \in \mathbb{Z}$ and $x = \frac{\pi}{2} + \pi m$ where $m \in \mathbb{Z}$. Thus, the equilibrium states are $(\frac{\pi}{2} + \pi m, \pi k)$ where $m, k \in \mathbb{Z}$.

The Jacobian matrix at (x, y) is $A(x, y) = \begin{pmatrix} 0 & \cos(y) \\ -\sin(x) & 0 \end{pmatrix}$. We have $A(\frac{\pi}{2} + \pi m, \pi k) = \begin{pmatrix} 0 & (-1)^k \\ (-1)^{m+1} & 0 \end{pmatrix}$ so the characteristic equation is $\lambda^2 + (-1)^{k+m+1} = 0$ so if k + m = 2l for some $l \in \mathbb{Z}$ then the eigenvalues are ± 1 and if k+m = 2l+1 for some $l \in \mathbb{Z}$ then there are no real eigenvalues and the complex eigenvalues are $\pm i$. Thus, the equilibrium states $(\frac{\pi}{2} + \pi m, \pi k)$ where $m, k \in \mathbb{Z}$ and m + k is even are saddle points, and the other equilibrium states we cannot classify as the linearized system predicts center which is a "borderline case".

(c) Solution. To find equilibrium states, we need to solve the system of equations xy - 1 = 0, $x - y^3 = 0$. The second equation gives us that $x = y^3$ so the first equation gives us that $y^4 = 1$ so $y = \pm 1$ and $x = y^3$. Thus, the equilibrium states are (1, 1) and (-1, -1).

The Jacobian matrix at (x, y) is $A(x, y) = \begin{pmatrix} y & x \\ 1 & -3y^2 \end{pmatrix}$.

We have $A(1,1) = \begin{pmatrix} 1 & 1 \\ 1 & -3 \end{pmatrix}$ so the characteristic equation is $\lambda^2 + 2\lambda - 4 = 0$ so the eigenvalues are $1 \pm \sqrt{5}$. Since the eigenvalues are distinct and have different signs, we have that (1,1) is a saddle point.

We have $A(-1, -1) = \begin{pmatrix} -1 & -1 \\ 1 & -3 \end{pmatrix}$ so the characteristic equation is $\lambda^2 + 4\lambda + 4 = 0$ so $(\lambda + 2)^2 = 0$ so there is one real eigenvalue -2. Since there is only one eigenvalue and the matrix is not diagonal, we cannot classify (-1, -1) from the linear system we obtain that it corresponds to degenerate stable node which is a "borderline case".

3. Solution. (a) To find equilibrium states, we need to solve the system of equations $y^3 - 4x = 0$, $y^3 - y - 3x = 0$. The first equation gives us that $x = \frac{1}{4}y^3$ so the second equation gives us that $y^3 - 4y = 0$ so y(y-2)(y+2) = 0 so y = 0 or y = 2 or y = -2. Thus, the equilibrium states are (0,0), (2,2) and (-2,-2).

The Jacobian matrix at (x, y) is $A(x, y) = \begin{pmatrix} -4 & 3y^2 \\ -3 & 3y^2 - 1 \end{pmatrix}$.

We have $A(0,0) = \begin{pmatrix} -4 & 0 \\ -3 & -1 \end{pmatrix}$ so the eigenvalues are -4 and -1. Since the eigenvalues are distinct negative numbers, we have that (0,0) is a stable node.

We have $A(2,2) = \begin{pmatrix} -4 & 12 \\ -3 & 11 \end{pmatrix}$ so the characteristic equation is $\lambda^2 - 7\lambda - 8 = 0$, i.e., $(\lambda - 8)(\lambda + 1) = 0$ the eigenvalues are 8 and -1. Since the eigenvalues are of different sign, we have that (2,2) is a saddle point.

We have $A(-2, -2) = \begin{pmatrix} -4 & 12 \\ -3 & 11 \end{pmatrix} = A(2, 2)$ so we have that (-2, -2) is a saddle point.

- (b) $\frac{d}{dt}(x-y) = y^3 4x (y^3 y 3x) = y x = 0$ at points with x = y so x y = 0, i.e., x = y, is an invariant line.
- (c) $\frac{d}{dt}(x-y) = -(x-y)$ so $x(t) y(t) = Ce^{-t}$ for some constant $C \in \mathbb{R}$ where C = x(0) y(0). Thus, if $x(0) \neq y(0)$ so we are not on the line x = y, then $\lim_{t \to \infty} |x(t) - y(t)| = \lim_{t \to \infty} |C|e^{-t} = 0$.
- (d) To sketch the phase portrait, we would like to find eigenvectors of A(2,2) = A(-2,-2). An eigenvector for 8 is $\begin{pmatrix} 1\\1 \end{pmatrix}$. An eigenvector for -1 is $\begin{pmatrix} 4\\1 \end{pmatrix}$. We also would like to find eigenvectors of A(0,0). An eigenvector for -4 is $\begin{pmatrix} 1\\1 \end{pmatrix}$, and an eigenvector for -1 is $\begin{pmatrix} 0\\1 \end{pmatrix}$. See the picture of the phase portrait at the end of the homework solutions.

4. Solution. The circle rotations are not structurally stable. Consider $R_{\alpha} \colon S^1 \to S^1$ given by $R_{\alpha}(x) = x + \alpha \pmod{1}$ for $x \in S^1$. If $\alpha \in \mathbb{Q}$, then all orbits of R_{α} are periodic and if $\alpha \in \mathbb{R} \setminus \mathbb{Q}$, then all orbits are dense. For any $\varepsilon > 0$ there exists $\beta \in \mathbb{R} \setminus \mathbb{Q}$ and $\gamma \in \mathbb{Q}$ such that $|\beta - \alpha| < \varepsilon$ and $|\gamma - \alpha| < \varepsilon$. Thus, for any α we can find rotation on S^1 arbitrarily C^1 -close to R_{α} with the different orbit behavior (all orbits periodic vs all orbits dense) so they cannot be topologically conjugate. Therefore, R_{α} is not structurally stable.

- 5. Proof. Let $f: X \to X$ be a continuous map. Assume $x \in X$ is recurrent for f so $x = \lim_{k \to \infty} f^{n_k}(x)$ for some subsequence (n_k) such that $n_k \to \infty$ as $k \to \infty$. Then, $f(x) = f(\lim_{k \to \infty} f^{n_k}(x)) = \lim_{k \to \infty} f(f^{n_k}(x))$ as f is a continuous function. Thus, $f(x) = \lim_{k \to \infty} f^{n_k+1}(x)$ so f(x) is recurrent for f.
- 6. Proof. Let $X \subset \mathbb{R}$ be a closed interval and $f: X \to X$ is a λ -contraction (where $0 < \lambda < 1$). Since f is a contraction, by the Contraction principle, there exists a unique $c \in X$ such that f(c) = c and for every $x \in X$ and $n \in \mathbb{N}$ we have $d(f^n(x), c) \leq \lambda^n d(x, c)$.

Let $x \in X$ be such that $f(x) \neq x$, i.e., $x \neq c$. Let $\varepsilon = \frac{(1-\lambda)d(x,c)}{2} > 0$. By the triangle inequality $d(x,c) \leq d(x, f^n(x)) + d(f^n(x), c)$. Thus, for any $n \in \mathbb{N}$ we have

$$d(f^n(x), x) \ge d(x, c) - d(f^n(x), c) \ge d(x, c) - \lambda^n d(x, c) = (1 - \lambda^n) d(x, c) \ge (1 - \lambda) d(x, c) > \varepsilon.$$

Therefore, no point in X, except for the fixed point, is recurrent.

The phase portrait for Problem 3d.

