Homework 8

MAT 351, Instructor: Alena Erchenko

- 1. Consider the system $\dot{x} = y$, $\dot{y} = -x + (1 x^2 y^2)y$. Show that $x(t) = \sin(t)$, $y(t) = \cos(t)$ is a solution of the system and describe geometrically the trajectory.
- 2. For each of the following systems, find the equilibrium states and classify them (if possible from the linearization).
 - (a) $\dot{x} = x y$, $\dot{y} = x^2 4$;
 - (b) $\dot{x} = \sin(y), \quad \dot{y} = \cos(x);$
 - (c) $\dot{x} = xy 1, \dot{y} = x y^3$.
- 3. Consider the system $\dot{x} = y^3 4x$, $\dot{y} = y^3 y 3x$.
 - (a) Find all the equilibrium states and classify them;
 - (b) Show that the line x = y is invariant, i.e., any trajectory that starts on it stays on it;
 - (c) Show that $|x(t) y(t)| \to 0$ as $t \to \infty$ for all other trajectories; <u>Hint:</u> Form a differential equation for x - y.
 - (d) Sketch the phase portrait.
- 4. Are circle rotations structurally stable? Justify your answer.
- 5. Let $X \subset \mathbb{R}^k$. Consider a continuous map $f: X \to X$. Prove that if a point $x \in X$ is recurrent, then f(x) is also recurrent.

<u>Remark</u>: It implies that the set R of recurrent points satisfies $f(R) \subset R$.

6. Let $X \subset \mathbb{R}$ be a closed interval with the distance d coming from \mathbb{R} . Consider a contraction $f: X \to X$. Prove that no point in X, except for the fixed point, is recurrent, that is, show that if $f(x) \neq x$, then there is $\varepsilon > 0$ such that there is no $n \in \mathbb{N}$ with $d(f^n(x), x) < \varepsilon$.