Homework 8

MAT 351, Instructor: Alena Erchenko

1. Consider the system $\dot{x}=y, \dot{y}=-x+\left(1-x^{2}-y^{2}\right) y$. Show that $x(t)=\sin (t), \quad y(t)=\cos (t)$ is a solution of the system and describe geometrically the trajectory.
2. For each of the following systems, find the equilibrium states and classify them (if possible from the linearization).
(a) $\dot{x}=x-y, \quad \dot{y}=x^{2}-4 ;$
(b) $\dot{x}=\sin (y), \quad \dot{y}=\cos (x)$;
(c) $\dot{x}=x y-1, \dot{y}=x-y^{3}$.
3. Consider the system $\dot{x}=y^{3}-4 x, \quad \dot{y}=y^{3}-y-3 x$.
(a) Find all the equilibrium states and classify them;
(b) Show that the line $x=y$ is invariant, i.e., any trajectory that starts on it stays on it;
(c) Show that $|x(t)-y(t)| \rightarrow 0$ as $t \rightarrow \infty$ for all other trajectories;

Hint: Form a differential equation for $x-y$.
(d) Sketch the phase portrait.
4. Are circle rotations structurally stable? Justify your answer.
5. Let $X \subset \mathbb{R}^{k}$. Consider a continuous map $f: X \rightarrow X$. Prove that if a point $x \in X$ is recurrent, then $f(x)$ is also recurrent.
Remark: It implies that the set R of recurrent points satisfies $f(R) \subset R$.
6. Let $X \subset \mathbb{R}$ be a closed interval with the distance d coming from \mathbb{R}. Consider a contraction $f: X \rightarrow X$. Prove that no point in X, except for the fixed point, is recurrent, that is, show that if $f(x) \neq x$, then there is $\varepsilon>0$ such that there is no $n \in \mathbb{N}$ with $d\left(f^{n}(x), x\right)<\varepsilon$.

