Homework 10 - Solutions

MAT 351, Instructor: Alena Erchenko

1. Solution. (a) Since $B_{i} \cap B_{j}=\emptyset$ if $i \neq j$, we have that if $x \in B_{i}$ then $x \notin B_{j}$ for all $j \neq i$. Therefore, $a_{i} \geq 0$ for all $i \in\{1,2, \ldots, n\}$ because $s(x) \geq 0$ for all $x \in X$.
By definition, we have

$$
\int_{X} s(x) d \mu(x)=\sum_{k=1}^{n} a_{k} \mu\left(B_{k}\right) .
$$

Thus, $\int_{X} s(x) d \mu(x) \geq 0$ because $a_{k} \geq 0$ and $\mu\left(B_{k}\right) \geq 0$ for all $k \in\{1,2, \ldots, n\}$.
(b) Let $s(x)=\sum_{k=1}^{n} a_{k} \chi_{A_{k}}(x)$ where $a_{1}, \ldots, a_{n} \in \mathbb{R}$ and A_{1}, \ldots, A_{n} are measurable and $h(x)=$ $\sum_{k=1}^{m} b_{k} \chi_{B_{k}}(x)$ where $b_{1}, \ldots, b_{m} \in \mathbb{R}$ and B_{1}, \ldots, B_{m} are measurable.
Then, $a s(x)+b h(x)=\sum_{k=1}^{n} a a_{k} \chi_{A_{k}}(x)+\sum_{k=1}^{m} b b_{k} \chi_{B_{k}}(x)$ where $a a_{1}, \ldots, a a_{n} \in \mathbb{R}$ and $b b_{1}, \ldots, b b_{m} \in$ \mathbb{R} so it is a simple function. Thus,

$$
\begin{aligned}
\int_{X} a s(x)+b h(x) d \mu(x) & =\sum_{k=1}^{n} a a_{k} \mu\left(A_{k}\right)+\sum_{k=1}^{m} b b_{k} \mu\left(B_{k}\right) \\
& =a \sum_{k=1}^{n} a_{k} \mu\left(A_{k}\right)+b \sum_{k=1}^{m} b_{k} \mu\left(B_{k}\right) \\
& =a \int_{X} s(x) d \mu(x)+b \int_{X} h(x) d \mu(x) .
\end{aligned}
$$

(c) Let $f: X \rightarrow \mathbb{R}$ be a measurable integrable function. Define $f_{+}(x)= \begin{cases}f(x) & \text { if } f(x)>0 \\ 0 & \text { otherwise }\end{cases}$ and $f_{-}(x)=\left\{\begin{array}{c}-f(x) \text { if } f(x)<0 \\ 0 \quad \text { otherwise }\end{array}\right.$. Then, $|f(x)|=f_{+}(x)+f_{-}(x)$ for all $x \in X$. Also, since $f_{+}(x) \geq 0$ and $f_{-}(x) \geq 0$ for all $x \in X$, by the remark in the item (a), we have $\int_{X} f_{+}(x) d \mu(x) \geq 0$ and $\int_{X} f_{-}(x) d \mu(x) \geq 0$.

Therefore, using the remark from the item (b), we obtain

$$
\begin{aligned}
\left|\int_{X} f(x) d \mu(x)\right| & =\left|\int_{X} f_{+}(x) d \mu(x)-\int_{X} f_{-}(x) d \mu(x)\right| \\
& \leq\left|\int_{X} f_{+}(x) d \mu(x)\right|+\left|\int_{X} f_{-}(x) d \mu(x)\right| \\
& =\int_{X} f_{+}(x) d \mu(x)+\int_{X} f_{-}(x) d \mu(x) \\
& =\int_{X}\left(f_{+}(x)+f_{-}(x)\right) d \mu(x) \\
& =\int_{X}|f(x)| d \mu(x) .
\end{aligned}
$$

2. Solution. Let $A \subset X$ be a measurable set such that $T^{-1}(A)=A$. Then, $\chi_{A}: X \rightarrow \mathbb{R}$ is a measurable function and $\chi_{A}(T(x))=\chi_{T^{-1} A}(x)=\chi_{A}(x)$ for all $x \in X$, i.e., $\chi_{A} \circ T=\chi_{A}$ everywhere so χ_{A} is constant almost everywhere. In particular, $\chi_{A}(x)=1$ almost everywhere or $\chi_{A}(x)=0$ almost everywhere, so $\mu(A)=1$ or $\mu(A)=0$.
3. Solution. Let $A_{1}, A_{2}, A_{3} \subset X$ be measurable sets.

First, we show that $\mu\left(A_{i} \Delta A_{j}\right)=\int_{X}\left|\chi_{A_{i}}(x)-\chi_{A_{j}}(x)\right| d \mu(x)$. We have $A_{i} \Delta A_{j}=\left(A_{i} \backslash A_{j}\right) \cup$ $\left(A_{j} \backslash A_{i}\right)$.
We have that $\chi_{A_{i} \Delta A_{j}}(x)$ is equal to 1 if ($x \in A_{i}$ and $x \notin A_{j}$) or ($x \in A_{j}$ and $x \notin A_{i}$) and is equal to 0 otherwise. Thus, $\chi_{A_{i} \Delta A_{j}}(x)=\left|\chi_{A_{i}}(x)-\chi_{A_{j}}(x)\right|$ for all $x \in X$, because if $x \in X$ then $\left(x \in A_{i}\right.$ and $\left.x \notin A_{j}\right)$ or $\left(x \in A_{j}\right.$ and $\left.x \notin A_{i}\right)$ or $\left(x \in A_{i}\right.$ and $\left.x \in A_{j}\right)$ or $\left(x \notin A_{i}\right.$ and $\left.x \notin A_{j}\right)$ so we can check the values of the function.

Hence,

$$
\mu\left(A_{i} \Delta A_{j}\right)=\int_{X} \chi_{A_{i} \Delta A_{j}}(x) d \mu(x)=\int_{X}\left|\chi_{A_{i}}(x)-\chi_{A_{j}}(x)\right| d \mu(x) .
$$

Furthermore, using the above, we obtain

$$
\begin{aligned}
\mu\left(A_{1} \Delta A_{3}\right) & =\int_{X}\left|\chi_{A_{1}}(x)-\chi_{A_{3}}(x)\right| d \mu(x) \\
& =\int_{X}\left|\left(\chi_{A_{1}}(x)-\chi_{A_{2}}(x)\right)+\left(\chi_{A_{2}}(x)-\chi_{A_{3}}(x)\right)\right| d \mu(x) \\
& \leq \int_{X}\left|\chi_{A_{1}}(x)-\chi_{A_{2}}(x)\right| d \mu(x)+\int_{X}\left|\chi_{A_{2}}(x)-\chi_{A_{3}}(x)\right| d \mu(x) \quad \text { using Problem 1 } \\
& =\mu\left(A_{1} \Delta A_{2}\right)+\mu\left(A_{2} \Delta A_{3}\right)
\end{aligned}
$$

Hence, $\mu\left(A_{1} \Delta A_{3}\right) \leq \mu\left(A_{1} \Delta A_{2}\right)+\mu\left(A_{2} \Delta A_{3}\right)$.
4. Solution. Let $E \subset X$ be a measurable set such that $\mu\left(T^{-1} E \Delta E\right)=0$.
(a) We have $x \in T^{-1} E_{0}$ if and only if $T(x) \in E_{0}$ if only if $T^{k}(T(x))=T^{k+1}(x) \in E$ for infinitely many $k \in \mathbb{N}$ if and only if $T^{m}(x) \in E$ for infinitely many $m \in \mathbb{N}$ if and only if $x \in E_{0}$. Hence, $T^{-1}\left(E_{0}\right)=E_{0}$.
(b) Notice that
i. if $x \in E_{0} \backslash E$, then there exists some $k \in \mathbb{N}$ such that $x \in T^{-k}(E) \backslash E$ so $x \in E \Delta T^{-k}(E)$ for some $k \in \mathbb{N}$;
ii. if $x \in E \backslash E_{0}$, then there exists some $k \in \mathbb{N}$ such that $x \notin T^{-k}(E)$ so $x \in E \backslash T^{-k}(E)$ so $x \in E \Delta T^{-k}(E)$ for some $k \in \mathbb{N}$.
Thus, if $x \in E_{0} \Delta E$, then $x \in E \Delta T^{-k}(E)$ for some $k \in \mathbb{N}$ so

$$
E_{0} \Delta E \subset \bigcup_{k=1}^{\infty} E \Delta T^{-k}(E)
$$

(c) We prove that $E \Delta T^{-k}(E) \subset \bigcup_{i=0}^{k-1} T^{-i}(E) \Delta T^{-(i+1)}(E)$ for any $k \in \mathbb{N}$ by induction. The base case $k=1$ is obvious as $\bigcup_{i=0}^{k-1} T^{-i}(E) \Delta T^{-(i+1)}(E)=E \Delta T^{-1}(E)=E \Delta T^{-k}(E)$ for $k=1$. Assume we know the statement for k and want to show for $k+1$.
We have $x \in E \Delta T^{-(k+1)}(E)$ so $\left(x \in E\right.$ and $x \notin T^{-(k+1)}(E)$) or ($x \notin E$ and $x \in$ $T^{-(k+1)}(E)$). Since $x \in X$, we have $x \in T^{-k}(E)$ or $x \notin T^{-k}(E)$. Considering all the possibilities, we obtain that $x \in T^{-k}(E) \Delta T^{-(k+1)}(E)$ or $x \in E \Delta T^{-k}(E)$, in particular, by the induction hypothesis, $x \in \bigcup_{i=0}^{k-1} T^{-i}(E) \Delta T^{-(i+1)}(E)$. Thus, $x \in \bigcup_{i=0}^{k} T^{-i}(E) \Delta T^{-(i+1)}(E)$ so $E \Delta T^{-(k+1)}(E) \subset \bigcup_{i=0}^{k} T^{-i}(E) \Delta T^{-(i+1)}(E)$ and we obtain the inductive step.
Hence, we proved the statement.
(d) Using item (c) and the properties of the measure that we discussed in class, we obtain for all $k \in \mathbb{N}$

$$
\begin{aligned}
\mu\left(E \Delta T^{-k}(E)\right) & \leq \sum_{i=0}^{k-1} \mu\left(T^{-i}(E) \Delta T^{-(i+1)}(E)\right)=\sum_{i=0}^{k-1} \mu\left(T^{-i}\left(E \Delta T^{-1}(E)\right)\right) \\
& =k \mu\left(E \Delta T^{-1}(E)\right)=0
\end{aligned}
$$

as T preserves μ and $\mu\left(E \Delta T^{-1} E\right)=0$.
Thus, $\mu\left(E \Delta T^{-k}(E)\right)=0$ for all $k \in \mathbb{N}$.
Using item (b) and the above, we obtain that

$$
\mu\left(E_{0} \Delta E\right) \leq \sum_{k=1}^{\infty} \mu\left(E \Delta T^{-k}(E)\right)=0 .
$$

Thus, $\mu\left(E_{0} \Delta E\right)=0$.
(e) Since $\mu\left(E_{0} \Delta E\right)=0$, we have that $\mu\left(E_{0} \backslash E\right)+\mu\left(E \backslash E_{0}\right)=0$ so $\mu\left(E_{0} \backslash E\right)=\mu\left(E \backslash E_{0}\right)=0$. Thus, since $E=\left(E \backslash E_{0}\right) \cup\left(E \cap E_{0}\right)$ and $E_{0}=\left(E_{0} \backslash E\right) \cup\left(E_{0} \cap E\right)$, we obtain that $\mu(E)=\mu\left(E_{0}\right)$. By item (a), $T^{-1} E_{0}=E_{0}$ so $\mu\left(E_{0}\right)=0$ or $\mu\left(E_{0}\right)=1$ as T is ergodic. Therefore, $\mu(E)=0$ or $\mu(E)=1$.
5. Solution. Let $A \subset X$ be measurable and $T^{-1}(A)=A$. Then, $T^{-1}(A) \Delta A=\emptyset$ so $\mu\left(T^{-1}(A) \Delta A\right)=$ $\mu(\emptyset)=0$. Thus, $\mu(A)=0$ or $\mu(A)=1$ by the assumption. Therefore, T is ergodic by definition.
6. Solution. Let $\alpha \in \mathbb{Q}$ so $\alpha=\frac{p}{q}$ where $p \in \mathbb{Z}, q \in \mathbb{N}$, and p and q are coprime.

If $q=1$, then $\alpha \in \mathbb{Z}$ so $R_{\alpha}(x)=x$ for all $x \in S^{1}$. Thus, $A=\left[0, \frac{1}{2}\right]$ is a measurable such that $R_{\alpha}^{-1}(A)=A$ and $0<\mu(A)=\frac{1}{2}<1$. Thus, R_{α} is not ergodic.
We can assume that $0<\frac{p}{q}<1$ as if $\frac{p}{q}>1$ then $\frac{p}{q}=n+\frac{\tilde{p}}{q}$ where $n \in \mathbb{N}$ and \tilde{p} and q are coprime and $R_{\frac{p}{q}}=R_{\frac{p}{q}}$. If $\frac{p}{q}<0$, then we can repeat a similar construction as below.
Let $0<\frac{p}{q}<1$. Define $A=\bigcup_{n=0}^{q-1}\left[n \cdot \frac{p}{q}, n \cdot \frac{p}{q}+\frac{1}{2 q}\right]$. Then, $R_{\frac{p}{q}}^{-1}(A)=A$ and $0<\mu(A)=q \cdot \frac{1}{2 q}=\frac{1}{2}<1$. Thus, $R_{\frac{p}{q}}$ is not ergodic.

