Homework 9 - Solutions

MAT 351, Instructor: Alena Erchenko

1. Solution. If $A \subset[0,1]$, we use the following notation for the sets $\frac{A}{3}=\left\{\left.\frac{x}{3} \right\rvert\, x \in A\right\}$ and $\frac{2}{3}+A=$ $\left\{\left.\frac{2}{3}+x \right\rvert\, x \in A\right\}$.
Let $A_{1}=\left(\frac{1}{3}, \frac{2}{3}\right)$ which is measurable as it is an open interval. Let $A_{2}=\left(\frac{1}{3^{2}}, \frac{2}{3^{2}}\right) \cup\left(\frac{2}{3}+\frac{1}{3^{2}}, \frac{2}{3}+\frac{2}{3^{2}}\right)$ which is measurable as it is a union of two measurable sets that are open intervals. We define $A_{k}=\frac{A_{k-1}}{3} \cup\left(\frac{2}{3}+\frac{A_{k-1}}{3}\right)$ for $k \geq 2$. If A_{k-1} is a union of open intervals (so it is measurable) so $\frac{A_{k-1}}{3}$ and $\left(\frac{2}{3}+\frac{A_{k-1}}{3}\right)$ are the union of open intervals so they are measurable. Since A_{k} is the union of those sets, we obtain that A_{k} is the union of open intervals so it is measurable. Let $A=\bigcup_{n=1}^{\infty} A_{n}$ then it is a measurable set as it is a countable union of measurable sets. Thus, the middle-thirds Cantor set $C=[0,1] \backslash A$ is a measurable set as $[0,1]$ is a closed interval so measurable and A is measurable.

Denote the Lebesgue measure on \mathbb{R} by μ. We have

$$
\begin{aligned}
\mu\left(A_{k}\right) & =\mu\left(\frac{A_{k-1}}{3} \cup\left(\frac{2}{3}+\frac{A_{k-1}}{3}\right)\right) \\
& =\mu\left(\frac{A_{k-1}}{3}\right)+\mu\left(\left(\frac{2}{3}+\frac{A_{k-1}}{3}\right)\right) \quad \text { as } \frac{A_{k-1}}{3} \cap\left(\frac{2}{3}+\frac{A_{k-1}}{3}\right)=\emptyset \\
& =\frac{2}{3} \mu\left(A_{k-1}\right) \quad \text { using the Lebesgue measure of intervals. }
\end{aligned}
$$

Thus, $\mu\left(A_{k}\right)=\left(\frac{2}{3}\right)^{k-1} \mu\left(A_{1}\right)=\frac{1}{3}\left(\frac{2}{3}\right)^{k-1}$.
Notice that $A_{j} \cap A_{i}=\emptyset$ for $i \neq j$ so

$$
\mu(A)=\sum_{n=1}^{\infty} \mu\left(A_{n}\right)=\frac{1}{3} \sum_{n=1}^{\infty}\left(\frac{2}{3}\right)^{n-1}=\frac{1}{3} \cdot \frac{1}{1-\frac{1}{3}}=1 .
$$

Therefore, $\mu(C)=\mu([0,1])-\mu(A)=1-1=0$.
2. Solution. Let $a \in[0,1)$. Consider $b=\frac{1-a}{1+2(1-a)}=\frac{1-a}{3-2 a} \in\left(0, \frac{1}{3}\right]$. Consider the set C that is obtained by removing from the middle each closed interval starting from $[0,1]$ an open interval of length b times the length of the closed interval. Notice that by the construction, the set won't contain any open intervals: Let $A_{0}=[0,1], A_{1}=\left[0, \frac{1}{2}-\frac{b}{2}\right] \cup\left[\frac{1}{2}+\frac{b}{2}, 1\right]$ and so on. Then, $C=\bigcap_{k=0}^{\infty} A_{k}$, in particular, C is measurable. Moreover, A_{k} contains 2^{k} maximal closed intervals of length at most $\frac{1}{2^{k}} \rightarrow 0$ as $k \rightarrow \infty$.

The other way to describe C is the following: C is equal to $[0,1]$ without a countable union of the open intervals which is also shows that C is a measurable set. On the k-th step we remove a set of Lebesgue measure $(2 b)^{k-1} b$. Thus, the resulting set has measure equal to $1-b \sum_{n=1}^{\infty}(2 b)^{n}=1-\frac{b}{1-2 b}=a$.
3. Solution. Let $A^{c}=\mathbb{R} \backslash A$.
\Rightarrow : Let $A \subset \mathbb{R}$ be closed, i.e., A contains all its limit points. Consider $x \in A^{c}$ so $x \notin A$. In particular, there exists $r>0$ such that $B(x, r) \subset A^{c}$, where $B(x, r)$ is an open ball centered at x of radius r. Since this is the case for any $x \in A^{c}$, we have A^{c} is open by definition.
\Leftarrow : Assume A^{c} is open, so for any $a \in A^{c}$ there exists $r>0$ such that $B(a, r) \subset A^{c}$. Let x be a limit point of A, so for any $r>0$ there exists $y \in B(x, r)$ such that $y \in A$. Thus, $x \notin A^{c}$ as there is no $r>0$ such that $B(x, r) \subset A^{c}$. Therefore, $x \in A$. Hence, A is closed.
4. Solution. No.

Assume, for contradiction, that there exists a closed set C in $[0,1]$ that has Lebesgue measure 1 , but does not contain any open intervals. Then, by the previous problem $\mathbb{R} \backslash C$ is open. In particular, the set $B=[0,1] \cap(\mathbb{R} \backslash C)$ contains an open interval, so $\mu(B)>0$ contradicting the fact that $\mu(B)=\mu([0,1])-\mu(C)=1-1=0$, where μ is the Lebesgue measure.
5. Solution. Consider $A \subset X$ such that $\mu(A)>0$.

Let $R_{n}=\left\{a \in A \mid f^{n}(a) \in A\right\}=A \cap f^{-n}(A)$.
We have: $a \in A$ returns to $A \Leftrightarrow a \in A$ and $f^{n}(a) \in A$ for some $n \in \mathbb{N} \Leftrightarrow a \in R_{n}$ for some $n \in \mathbb{N} \Leftrightarrow a \in \bigcup_{n=1}^{\infty} R_{n}$.
Thus, we obtain that the set R of the points of A that return to A coincides with $\bigcup_{n=1}^{\infty} R_{n}$.
Assume, for contradiction, that $\mu\left(R_{n}\right)=0$ for all $n \in \mathbb{N}$. Then, since we are in the setting of the Poincaré Recurrence Theorem, we have

$$
\mu(R)=\mu(A)
$$

Also, we have that

$$
\mu(R)=\mu\left(\bigcup_{n=1}^{\infty} R_{n}\right) \leq \sum_{n=1}^{\infty} \mu\left(R_{n}\right)=0
$$

so $\mu(R)=0$.
Thus, we obtain that $\mu(A)=0$ contradicting the fact that $\mu(A)>0$. Hence, there exists $n \in \mathbb{N}$ such that $\mu\left(A \cap f^{-n}(A)\right)>0$.
6. Solution. Notice that $A^{n}=\left(\begin{array}{ll}1 & n \\ 0 & 1\end{array}\right)$ for all $n \in \mathbb{N}$. Then, we have that $f^{n}(x, y)=(x+n y, y)$ for all $n \in \mathbb{N}$.
Consider the set $B=[0,1] \times[1,2]$. Then, B is measurable and $\mu(B)=(1-0) \cdot(2-1)=1$ where μ is the Lebesgue measure on \mathbb{R}^{2}. We show that for any $(x, y) \in B \backslash\{(0,1)\}$ there is no
$n \in \mathbb{N}$ such that $f^{n}(x, y) \in B$. To have $(x, y) \in B$ and $f^{n}(x, y) \in B$ where $n \in \mathbb{N}$, we have to have $0 \leq x \leq 1,1 \leq y \leq 2$, and $0 \leq x+n y \leq 1$. In particular, $-1 \leq-\frac{x}{y} \leq n \leq \frac{1-x}{y} \leq 1$. Therefore, the only option for $n \in \mathbb{N}$ is that $n=1$ which implies that $\frac{1-x}{y}=1$ so $x+y=1$ which implies that $x=0$ and $y=1$ as $x \in[0,1]$ and $y \in[1,2]$. Notice that $(0,1) \in B$ and $f(0,1)=(1,1) \in B$. Therefore, the measure of the set of the points in B that return to B is equal to the measure of the set $\{(0,1)\}$ which is equal to 0 and isn't equal to the measure of B.

