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Is Active Learning Enough? The 
Contributions of Misconception-
Focused Instruction and Active-
Learning Dosage on Student 
Learning of Evolution

ROSS H. NEHM, STEPHEN J. FINCH, AND GENA C. SBEGLIA

Prior studies of active learning (AL) efficacy have typically lacked dosage designs (e.g., varying intensities rather than simple presence or absence) 
or specification of whether misconceptions were part of the instructional treatments. In this study, we examine the extent to which different doses 
of AL (approximately 10%, 15%, 20%, 36% of unit time), doses of misconception-focused instruction (MFI; approximately 0%, 8%, 11%, 13%), 
and their intersections affect evolution learning. A quantitative, quasiexperimental study (N > 1500 undergraduates) was conducted using a 
pretest, posttest, delayed posttest design with multiple validated measures of evolution understanding. The student background variables (e.g., 
binary sex, race or ethnicity), evolution acceptance, and prior coursework were controlled. The results of hierarchical linear and logistic models 
indicated that higher doses of AL and MFI were associated with significantly larger knowledge and abstract reasoning gains and misconception 
declines. MFI produced significant learning above and beyond AL. Explicit misconception treatments, coupled with AL, should be explored in 
more areas of life science education.
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Evolutionary theory is considered to be one of the   
 most valuable scientific theories within the life sciences 

and across many other disciplines (Cosmides 1989, Dosi and 
Nelson 1994, Rutledge and Warden 2000). Because of this, 
the theory of evolution has been appropriately highlighted 
as a central component of science literacy more broadly, 
and many policy documents have urged educators to help 
students throughout the educational hierarchy understand 
this core biological concept (Brewer and Smith 2011, NRC 
2012). Evolution serves an additional function: It unites the 
diverse array of biological concepts, systems, and subdis-
ciplines into a coherent conceptual structure (NRC 1958, 
Brewer and Smith 2011). Despite such importance, the goal 
of instilling a robust understanding of evolution has been 
hard to achieve; decades of research on students from pri-
mary (Brown et al. 2020) to graduate school (Gregory 2007) 
indicate that students misunderstand basic features and 
mechanisms of evolutionary change and harbor a diverse 
array of nonnormative beliefs colloquially referred to as 

misconceptions (for reviews, see Gregory 2007, Nehm and 
Reilly 2007).

Misconceptions about the natural world are common, and 
many tend to persist for long periods of time. Constructivist 
learning theories emphasize that individuals begin to build 
their understanding of the natural world prior to and 
outside of formal schooling at a young age (NRC 2001). 
Understanding generated by these less formal learning 
experiences tends to differ from understanding generated 
by sustained and principled scientific effort (Vosniadou and 
Brewer 1992). For example, many students falsely believe 
that our planet is closer to the sun in summer than in winter 
because, in everyday situations, temperature is related to the 
distance from a heat source (Caravita and Halldén 1994, 
Hammer 1996). To students, their own ways of thinking are 
more plausible and less effortful than scientific practices. 
Students (and many teachers) remain satisfied with their 
personally constructed models of how the natural world 
works (NRC 2001).
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Misconceptions have been discussed in the scientific 
literature for at least 100 years (e.g., Osbern 1922) and are 
formally defined as “understandings or explanations that 
differ from what is known to be scientifically correct” (NRC 
2012, p. 58). In education, misconception is a term that has 
changed in meaning and has encompassed many differ-
ent forms of ideation, including universally false beliefs 
(e.g., vitalist forces exist and cause evolutionary change), 
normative ideas that become false beliefs as a result of 
overextension (e.g., mutations are always caused by the 
abiotic environment; needs cause goal-oriented change), 
and unproductive combinations of normative ideas and 
false beliefs. Misconceptions have also been differentiated 
by their cognitive stability (e.g., theory-like permanence 
versus spontaneous mental assembly), timing (e.g., whether 
they occur before or after formal instruction on the topic), 
and value for learning (e.g., as necessary stepping stones to 
normative understanding versus problematic cognitive bag-
gage). Although misconceptions are a category of ideation 
composed of diverse entities and labeled in different ways, 
they are united by the role they often play: as barriers to 
normative scientific understanding (e.g., evolution; Gregory 
2007, Kampourakis 2020).

Constructivist theories suggest that explicitly engaging 
with students’ models of the world is essential for mean-
ingful learning to occur (NRC 2001). Empirical research 
indicates that student misconceptions are often impervious 
to traditional (nonconstructivist) teaching (Ausubel 1968, 
Guzzetti et  al. 1993). Generating cognitive dissonance in 
learners through active engagement during experiences 
that conflict with or challenge their thinking appears to 
be an essential feature of successful interventions (see 
Guzzetti et  al. 1993 for a meta-analysis). Many different 
active learning (AL) approaches may be used to generate 

such dissonance (e.g., peer-led discussions, labs, refutational 
worksheets; see Guzzetti et al. 1993 for numerous examples).

In a large amount of literature, student misconceptions 
about evolution have been catalogued (e.g., Gregory 2007, 
Nehm 2018; see supplemental table S1), and many assess-
ment tools have incorporated misconceptions into items 
intended to measure understanding (Anderson et al. 2002, 
Nehm et al. 2012, Kalinowski et al. 2016). Documenting stu-
dent misconceptions and incorporating them into measure-
ment instruments have laid the groundwork for developing 
and testing interventions for improving student learning of 
evolution and other areas of biology (e.g., Nehm and Reilly 
2007, Andrews et al. 2011, Beardsley et al. 2012).

Intervention studies remain comparatively rare in evo-
lution education, however, and are often small scale (e.g., 
one or two classes), lack robust research designs (e.g., no 
comparison groups, univariate designs), do not control for 
background variables (e.g., sex, race or ethnicity, evolution 
acceptance), use education-trained instructors (versus biolo-
gists; see Andrews et  al. 2011), and measure change using 
single instruments (see table  1; NRC 2014). Some studies 
have adopted only a few of these quality control criteria 
(e.g., Nehm and Reilly 2007), whereas others have adopted 
more (e.g., Andrews et  al. 2011). Additional studies that 
tackle these methodological limitations (table 1) are urgently 
needed to inform practice; the current body of intervention 
studies has produced ambiguous findings about evolution 
learning (e.g., Nehm and Reilly 2007, Andrews et al. 2011).

There is remarkably little large-scale work empirically 
testing whether explicit attention to evolution misconcep-
tions is beneficial, neutral, or harmful (e.g., by perpetuating 
problematic ideas). Indeed, in undergraduate education, 
although, many biology textbooks and curricula appear 
to focus on teaching only normative scientific ideas even 

Table 1. Limitations of prior studies of active learning of evolution and corresponding approaches for addressing these 
limitations.
Limitations of prior studies How limitation can be addressed

Instructor self-reports of time devoted to active learning and 
misconceptions.

Use instruments (e.g., COPUS) to independently measure instructional 
behaviors via direct observation along with reliability tests. 
Independent verification of time devoted to misconceptions.

Measures of learning outcomes only used parts of a validateda 
instrument or assessment items lacking robust validation.

Use multiple complete, validated assessment instruments adopting 
different perspectives to measure learning of the same constructs.

No control of evolution acceptance in measures of evolution learning. Use validated measures of acceptance (e.g., I-SEA) as a control 
variable in analyses.

Atypical instructors (i.e., BER faculty) used to implement instructional 
innovations, or different instructors used to compare conditions.

Study impact with biologists with no formal education training or DBER 
expertise and typical (average) teaching evaluations. Study the same 
instructor across course iterations.

Delayed posttesting of learning outcomes unclear or absent. Use a pretest, posttest, and delayed posttest design.

Lack of control of a wide array of relevant demographic and 
background variables.

Incorporate background variables (e.g., binary sex, race/ethnicity, EL 
status, prior biology courses) as control variables.

Sample sizes moderate to small with unreported participation rates. Collect large student samples and report participation rates.

Lack of replication of comparison differences Examine replicates of findings (e.g., across instruments, semesters, 
instructors)

Binary (e.g., presence/absence) versus dosage designs Incorporate dosage (or intensity) of classroom activities/interventions

Abbreviations: BER, biology education research; DBER, discipline-based education research. aAlthough instrument validation is a continuous 
process, we use the phrase validated instruments as opposed to instruments with validity evidence throughout this table to conserve space.

1105-1117-biac073.indd   1106 12/10/22   2:38 PM

D
ow

nloaded from
 https://academ

ic.oup.com
/bioscience/article/72/11/1105/6679362 by SU

N
Y Stony Brook U

niversity user on 03 N
ovem

ber 2022



Education

https://academic.oup.com/bioscience  November 2022 / Vol. 72 No. 11 • BioScience   1107   

though this approach is at odds with constructivist models 
of meaningful learning (NRC 2001). Despite a century of 
discussion of evolution misconceptions in undergraduate 
education (e.g., Osbern 1922, Gregory 2007), it remains 
unknown whether and to what extent undergraduate biol-
ogy courses are addressing these misconceptions.

In contrast to misconception-focused pedagogies, the 
biology education community has focused much more 
attention on AL and its impact on student outcomes 
(Freeman et  al. 2014). Initial studies of this approach to 
learning have mostly been focused on the presence or 
absence of AL. Freeman and colleagues (2014) proposed 
that varying intensities of AL should be an avenue of 
future work. Recently, Theobald and colleagues (2020) 
used this approach and reported that high-intensity AL 
narrowed exam score achievement gaps between minori-
tized and nonminoritized students (44% for high inten-
sity versus 22% for low intensity) and reduced passing 
rate disparities (76% for high intensity versus 16% for 
low intensity). These findings support the efficacy of AL, 
as well as the need to move away from binary (e.g., pres-
ence or absence) perspectives on classroom activities and 
interventions.

In contrast to other biology domains, the impacts of 
AL on evolution outcomes have shown that AL may (e.g., 
Nehm and Reilly 2007) or may not (Andrews et  al. 2011) 
lead to improved learning outcomes. Given such ambiguity, 
as well as the lack of robust large-scale studies investigating 
the impact of misconception-focused instruction (MFI) 
and numerous methodological weaknesses of prior work 
(table 1), we aim in this study to examine the outcomes of 
evolution instruction that varies along two primary axes: the 
extent to which misconceptions are addressed and the extent 
to which AL is implemented (see figure 1). By incorporating 
varying doses of AL and MFI, we build on the insights and 
advances of Freeman and colleagues (2014) and Theobald 
and colleagues (2020) described above.

The present study took place in a large introductory biol-
ogy class taught by a typical faculty member (a biologist 
with no formal education preparation) using a quantitative, 
quasiexperimental, pretest, posttest, delayed posttest design 
with large student samples, multiple control variables, 
varying treatment doses, and measures that conceptualize 
evolution learning in multiple ways. The inclusion of mul-
tiple measures is an important feature of this study because 
Freeman and colleagues’ (2014) meta-analysis results showed 
that different types of assessments (e.g., concept inventories 
versus instructor-designed tests) led to different inferences 
about the impact of AL on student outcomes.

Three research questions guided the study: Is the amount 
of evolution learning conditional on the amount (or dose) 
of AL? Is the amount of evolution learning conditional on 
the amount (or dose) of MFI above and beyond the con-
tributions of AL alone? And do measurement instruments 
adopting different perspectives on learning support the 
same inferences about the roles of AL and misconceptions 
in evolution learning?

Approach to answering our research questions

Study setting. The introductory biology course in which this 
study was conducted was characterized by many common 
constraints at research universities: large size (typically 500 
or greater), lecture-hall-style rooms, and pressure to cover 
as many concepts as possible. The prerequisites were high 
school biology and freshman-level math. The course was 
taught twice a week for 80 minutes, and the content was 
aligned with five core concepts of biological literacy (Brewer 
and Smith 2011). Four iterations of the course (A–D) were 
studied (figure  2, table  2). In each iteration, an evolution 
unit was taught in the first half of the semester by the same 
biologist instructor, with fewer than 20 years of teaching 
experience but no formal preparation or training in biology 
education or AL. The instructor did not design the study 
or the materials, nor were they aware of the study's goals 
or hypotheses. The total time devoted to this unit in each 
course iteration is shown in table 2 (see also section 1 of the 
supplemental material). In iteration D, the course was split 
into two sections (approximately 250 students each), one of 

Figure 1. Active learning and attention to misconceptions 
situated within a gradient or dosage framework (as a 
percentage). The low, medium, and high designations on 
the right hand side reflect the active learning intensity 
categories outlined by Theobald and colleagues (2020). 
The dots indicate the doses used in the present study. 
Importantly, dosages of active learning in this study were 
calculated relative to the overall time in the evolution unit 
(i.e., time spent on evolution content both in and out of 
class), unlike Theobald and colleagues’ (2020) estimates of 
active learning, which seem to consider only in class time.
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which was taught by a new instructor with 1 year of teaching 
experience and minimal preparation in biology education 
and AL. The data from this instructor were included only 
to test the replicability of the findings across instructors 
(see section 4.1 of the supplemental material for more infor-
mation about these procedures).

Measurement instruments. Different instruments reflect some-
what different perspectives on the relationship between mis-
conceptions and understanding, and as a result, they have 
implications for how to measure evolution learning. To sim-
plify, one perspective operationalizes evolution knowledge 
as the converse of misconceptions (what may be termed 
an either-or model). In this perspective, students are asked 
questions that include one normative answer option and a 
series of misconception options. The students are required 
to choose only one of the options, and if they choose a 
misconception, then they are inferred to lack understand-
ing of the concept that the question targets (e.g., differential 
survival). The total number of normative statements selected 
is calculated to establish a knowledge measure. Instruments 
that could be considered to score student understanding 
in this way include the Conceptual Inventory of Natural 
Selection (CINS; Anderson et al. 2002) and the Conceptual 
Assessment of Natural Selection (CANS; Kalinowski et  al. 
2016).

A slightly different perspective on the relationship 
between misconceptions and knowledge assumes that these 
different ideas coexist in students’ minds and that using one 
idea does not preclude the use of another. Different types 
and combinations of ideas (even those appearing contra-
dictory from an expert perspective) may be activated or 
repressed on the basis of the reasoning situation. Examples 
of different reasoning situations include evolution in a plant 

versus in an animal and the evolutionary gain or loss of a 
biological trait (Nehm and Ridgway 2011). In this mixed-
model perspective, knowledge and its measurement are 
operationalized as the context-dependent frequency or mix-
ture of normative ideas and misconceptions. For example, 
it is possible for a student to have a high level of knowledge 
scores and many misconceptions about plant trait loss but 
a low level of knowledge and many misconceptions about 
animal trait gain.

Instruments that adopt a mixed-model perspective ask 
students open-ended questions that permit any normative 
or nonnormative ideas in any combination. The students are 
inferred to have varying levels of evolution understanding 
on the basis of the types and compositional frequencies of 
ideas across contexts. Instruments that adopt this perspec-
tive include Bishop and Anderson's (1990) assessment and 
Nehm and colleagues’ (2012) Assessment of Contextual 
Reasoning about Natural Selection (ACORNS).

In summary, instruments envision misconceptions and 
their relationship to knowledge somewhat differently, but 
they all consider misconceptions to be an important aspect 
of assessment.

Three previously published instruments with substantial 
validity evidence were used to measure knowledge of evolu-
tion and were also found to generate valid inferences in the 
local sample. The first two, CINS (Anderson et  al. 2002) 
and the CANS (Kalinowski et al. 2016), may be considered 
either-or knowledge measures. The CINS measures 10 
concepts using 20 multiple-choice items; higher scores are 
intended to indicate more knowledge. Each CINS item has 
one correct response and several misconception distrac-
tors. Although the CINS has psychometric problems at a 
fine-grained level, Nehm and Schonfeld (2008) reported 
that the instrument generates valid inferences about overall 
evolutionary knowledge using total scores. After our study 
began, the CANS (Kalinowski et  al. 2016) was developed. 
To establish whether the CANS would corroborate patterns 
produced using the CINS, both instruments were used in 
two semesters. Like the CINS, the CANS adopts an either-or 
measurement model, with one normative idea and multiple 
misconception distractors for each item. The CANS has 24 
multiple-choice items, and higher scores are intended to 
indicate more evolution knowledge.

The third instrument used to study evolution knowl-
edge was the ACORNS (Nehm et al. 2012). The ACORNS 
is a constructed response instrument that measures three 
aspects of evolution understanding: evolution knowledge 
(i.e., normative ideas), evolution misconceptions, and the 
coherence of evolution knowledge (i.e., consistency across 
evolution problem types). Validity and reliability evidence 
has been gathered for this measurement in comparable 
undergraduate settings (e.g., Nehm et al. 2012, Opfer et al. 
2012, Beggrow et  al. 2014). The ACORNS items were 
designed to vary in features known to affect novices but not 
experts (e.g., plant versus animal; Nehm and Ridgway 2011). 
Unlike the CINS and the CANS, the ACORNS permits the 

Figure 2. Summary of the study design, timing, and 
measures. Posttest refers to the assessment that occurred 
following evolution instruction, and delayed posttest refers 
to the assessment that occurred at the end of the semester 
(7–11 weeks after evolution instruction). See the text 
for measurement instrument details (e.g., ACORNS). 
Abbreviations: AL, active learning; MFI, misconception-
focused instruction.
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use of both normative ideas (core concepts) and naive ideas 
(misconceptions) in each response. Two ACORNS items 
were used: one about animal trait gain and one about plant 
trait loss (supplemental table S2). Each item was scored 
separately and given a score of either 0 or 1 for each of 
three core concepts (variation, heritability, and differential 
survival; max  = 3 points per item). The response was also 
scored for whether or not misconceptions (i.e., adapt or 
acclimation, needs or goals, use or disuse inheritance) were 
present (1, present; 0, absent). On the basis of the pattern of 
core concepts and misconceptions found in each ACORNS 
response, students were assigned a scientific model consis-
tency (MODC) score, which indicates whether normative 
ideas alone were used across responses at a single testing 
time point (MODC  = 1) or not (MODC  = 0). Responses 
lacking core concepts or misconceptions (e.g., repeating the 
question, mentioning irrelevant information) were coded as 
no model (MODC = 0). ACORNS responses across the four 
course iterations were scored using the machine-learning-
based tool EvoGrader (see Moharreri et  al. 2014 for valid-
ity details and human–computer agreements), eliminating 
common problems with human scoring drift and inconsis-
tency. For further information on the ACORNS, see Nehm 
and colleagues (2012) and Nehm (2018).

Given that knowledge and acceptance of evolution have 
been found to be related to some extent, controlling for 
acceptance in studies of learning is warranted but frequently 
lacking (e.g., Nehm and Reilly 2007, Andrews et  al. 2011). 
Evolution acceptance was measured using the I-SEA (the 
Inventory of Student Acceptance of Evolution; Nadelson 
and Southerland 2012). The I-SEA is a 24-item Likert-
scale instrument with five answer options. The instrument 
has three subscales: microevolution, macroevolution, and 
human evolution. Validity and reliability evidence has been 
gathered for measurement of evolution acceptance in under-
graduate settings (e.g., Nadelson and Southerland 2012, 
Sbeglia and Nehm 2018, 2019).

Active learning was operationalized following Stains 
and colleagues (2018) and measured using the Classroom 
Observation Protocol for Undergraduate STEM (COPUS; 
Smith et  al. 2013). The COPUS is a published instrument 
with substantial validity evidence. It is designed to col-
lect observational data about the behaviors of students 

and instructors in undergraduate classrooms (Smith et  al. 
2013). Trained COPUS raters score 25 specifically defined 
behaviors as either present or absent at 2-minute intervals 
throughout the classes studied. Several authors have used 
COPUS behaviors characteristic of student-centered teach-
ing as measures of AL (e.g., Stains et al. 2018, Sbeglia et al. 
2021). COPUS data were generated by three observers certi-
fied to conduct COPUS observations by an expert evaluator 
(Michelle K. Smith, one of the COPUS developers) and 
achieved Cohen's kappa interrater scores above .80. Further 
description about the measurement of AL using the COPUS 
is available in section 2 of the supplemental material.

Sample. The students were given the opportunity to com-
plete the ACORNS, the CINS, and the CANS (if relevant) 
during the first week of the course and at the end of the 
semester. These surveys were voluntary, and the participants 
received extra credit for complete responses. The students 
also completed the ACORNS during the first midterm, 
which counted toward the midterm grade (figure 2). Prior 
work in a comparable sample has shown that there were 
no meaningful differences in ACORNS scores between 
required and voluntary assessment conditions (Sbeglia and 
Nehm 2022). At all assessment time points, the students 
were administered an ACORNS plant loss item and an ani-
mal gain item (see above).

The students reported prior biology coursework (i.e., no 
prior biology, AP biology, one introductory biology course, 
two or more introductory biology courses), binary sex, 
and race or ethnicity (i.e., White, Asian, underrepresented 
minority [URM]; table  2). URM students were classified 
as those who identified as Black or African American, 
American Indian or Alaska Native, Hispanic of any race, or 
Native Hawaiian or other Pacific Islander (see table 2). Data 
were also collected on English language learner status, but 
this variable was insignificant and was removed to simplify 
the models.

Of the 1955 students enrolled in the course across the four 
semesters studied, 1629 consented to participate (see table 2 
for participation rates). Overall, 7.5% of the consenting 
students had at least one missing data point (the maximum 
missing data for any one variable was 2%; see supplemental 
table S3), leaving 1507 students who completed all relevant 

Table 2. Information about each course iteration and sample information for each course iteration.
Class information Sample information

Course 
iteration

Unit time  
(in minutes)

Percentage 
MFI

Percentage 
AL

Percentage

MFI ∩ AL
Sample 

size
Percentage 

Participation
Percentage 

female
Percentage 

URM
Percentage 
no prior bio

A 756 0.00 10.05 0.00 424 79 61 21 25

B 714 7.70 15.13 1.96 409 78 60 21 26

C 907 11.47 20.29 6.84 465 90 58 25 31

D 734 12.53 35.97 8.92 414 83 54 17 25

Abbreviations: AL, unit time in which active learning occurred; AL ∩ MFI, unit time in which active learning and misconception-focused instruction 
overlapped (i.e., intersected); MFI, unit time in which misconception-focused instruction occurred.
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assessments and were included in the analyses (N = 1507). 
In a recent study in different semesters of the same course 
(Sbeglia and Nehm 2022), the percentages of participating 
minoritized and female students were comparable to their 
distribution in the class. This finding suggests that participa-
tion bias is probably not significant. The study was approved 
by the university's institutional review board (protocol no. 
504,271) and was classified as not human subjects research. 
The procedures outlined in the present article are in accor-
dance with the ethical standards of the responsible commit-
tee on human experimentation (institutional and national) 
and with the Declaration of Helsinki 1975. Raw data and 
model R code are available from the corresponding author 
on emailed request.

Study design. Four consecutive 14-week spring semester itera-
tions (i.e., iterations A–D; figure 2) were studied. Only spring 
semesters were chosen to reduce unintended variability in 
the data. In particular, the fall semester at this institution 
tends to enroll students with lower high school GPAs (91.8 
versus 93.0 in spring), fewer arts and sciences majors (76.2% 

versus 84.5% in spring), more transfer 
students (8.7% versus 4.7% in spring), 
more commuters (15.3% versus 11.5% 
in spring), and more students in their 
first term at the university (18.1% versus 
4.7% in spring; Bertolini et  al. 2021). 
The precourse demographic variables 
and instrument scores were used to con-
trol for between-group differences. The 
dosages of AL and MFI increased across 
course iterations (table 2, figure 3).

MFI can be defined as student engage-
ment with content that explicitly attends 
to “understandings or explanations that 
differ from what is known to be scien-
tifically correct” (NRC 2012, p. 58). It 
therefore involves some form of peda-
gogy but specific content. The materials 
used as part of MFI in this study dif-
fered somewhat among the four course 
iterations: absent, present with vary-
ing dosage, and different types of mis-
conception exposures (e.g., homework, 
in-class lecture, in-class activity, indi-
vidual work, group work; supplemental 
table S4). Course iteration A lacked MFI 
altogether, whereas in the remaining 
three iterations, instructional materials 
designed to explicitly address student 
misconceptions (supplemental table S1) 
were implemented between the pretest 
and the posttest (figure 2).

The percentage of MFI in each course 
iteration was calculated by document-
ing the start and end times of MFI to 

the nearest minute using archived Echo recordings of each 
semester. The total time spent in MFI was then divided by 
the total time (both in and out of class) in the evolution 
unit overall. The percentage of time devoted to AL in each 
course iteration was calculated by dividing the total number 
of 2-minute COPUS intervals within which an AL-aligned 
behavior occurred by the total number of 2-minute intervals 
in the unit.

The percentage of time that the students experienced 
MFI and AL simultaneously (see figure 3 for visualization) 
was calculated by summing the number of minutes scored 
as both MFI and AL and dividing by the total time in the 
evolution unit.

Model description. Hierarchical linear and logistic models 
were used to determine the extent to which AL and MFI 
(both at varying doses) contributed to evolution learning 
(if at all). The statistical package lme4 in R (Bates et  al. 
2022) was used for all of the models. For outcome vari-
ables with three timepoints (see figure 2), the hierarchical 
linear and logistic model was built as a piecewise slope 

Figure 3. Relative amounts of active learning (AL) and misconception-focused 
instruction (MFI), and their intersections in each course iteration (iteration 
A–D). Iteration A had the lowest amount of AL and no MFI. The relative 
amount of AL increased from iteration A to D (also see table 1). Course 
iterations B–D had both AL and MFI with different amounts of intersection. 
The term intersection and its associated symbol ( ∩ ) are from set theory. In the 
intersection of two sets, such as hypothetical sets A and B, every element of A ∩ 
B belongs to both A and B. 
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model in which one slope was modeled from the pretest 
to the posttest (time 1) and a second was modeled from 
the posttest to the delayed posttest (time 2). The coef-
ficient of each time period represents the linear rate of 
change (i.e., the slope) of the outcome variable across that 
time period (Hoffman 2015). In line with Theobald and 
Freeman (2014), we controlled for four student-level vari-
ables: prior biology courses, binary sex, race or ethnicity, 
and pretest I-SEA score. Each observation was also char-
acterized by three continuous, time-invariant treatment 
variables: the percentage of AL, the percentage of MFI, 
and the percentage of AL ∩ MFI (table 2, see figure 3 for a 
visual representation). In addition, the treatment variables 
were modeled as having an interaction with the piecewise 
slope for time 1 and (for all outcomes but the CINS) 
time 2, allowing testing of whether the slope of evolution 
learning through time was conditional on the treatment 
dosage. Student identity was modeled as a random inter-
cept. For each evolution learning outcome variable, four 
models were fit: a control model (model C), an AL-only 
model (model A), an AL+MFI model (model AM) and an 
AL+MFI+AL ∩ MFI model (model AMI; figure  4). See 
section 3 of the supplemental material and supplemental 
table S5 for additional details about the models.

Analyses. Likelihood ratio tests (LRT) and Bayesian infor-
mation criteria were used to determine the extent to which 
the percentage of AL contributed to evolution learning out-
comes (model C versus model A; see figure 4). To determine 
how varying AL doses contributed to evolution knowledge 
growth through time, the model coefficients for the interac-
tions between the percentage of AL and each time period in 
model A were examined. The coefficient of the interaction 
represents the change in slope of evolution understanding at 
varying doses of AL.

To determine whether MFI significantly contributed to 
evolution learning outcomes above and beyond AL alone, 
the percentage of MFI was added as a predictor (model AM) 
and compared with model A using LRT (figure 4). To deter-
mine how varying MFI doses contributed to learning, model 
coefficients were examined for the interaction between the 
percentage of MFI and each time period in model AM.

Finally, the percentage of AL ∩ MFI was added as a 
predictor (model AMI) and compared with model AM 
(figure 4) to determine whether it significantly and uniquely 
contributed to evolution learning. To determine how vary-
ing the percentage of AL ∩ MFI doses contributed to evolu-
tion knowledge growth, the coefficients for the interaction 
between the percentage of AL ∩ MFI and each time period 
in model AMI were examined.

To test for replicability across instructors, the patterns of 
evolution learning in iteration D were compared between 
two sections of the course, one of which was taught by the 
experienced instructor who taught the prior three itera-
tions of the course and one of which was taught by a novice 
instructor. See section 4 of the supplemental material for 
additional details.

For all analyses, standardized coefficients (β), odds ratios 
(OR), and partial omega squared (ω2

P; Lakens 2013) were 
used to measure effect sizes where appropriate.

Key findings about the contribution of active  
learning and misconception-focused instruction to 
evolution learning
In all of the course iterations we studied, knowledge 
of and abstract reasoning about evolution significantly 
increased, and misconceptions significantly decreased 
(figure  5). Specifically, the CINS (Bpretest–posttest  = 14.8, 
βpretest–posttest  = 0.33, p  < .001, ω2

P  = 0.37), ACORNS 
core concepts (Bpretest–posttest  = 1.03, βpretest–posttest  = 0.46, 
p < .001, ω2

P = 0.54, Bposttest–delayed = 0.18, βposttest–delayed = 
0.08, p  < .001, ω2

P  = 0.05), and ACORNS MODC 
(ORpretest–posttest  = 9.82, βpretest–posttest  = 2.22, p  < .001, 
ORpretest–delayed = 1.51, βpretest–delayed = 0.40, p < .001) sig-
nificantly increased from both the pretest to posttest and 
the posttest to delayed posttest. Likewise, ACORNS mis-
conceptions decreased significantly both from the pretest 
to the posttest and from the posttest to the delayed post-
test (ORpretest–posttest = 0.26, βpretest–posttest = −1.6, p < .001, 
ORposttest–delayed  = 0.63, βposttest–delayed  = −0.55, p  < .001). 
The percentage of students with evolution misconcep-
tions declined from approximately 33% at the pretest to 
approximately 19% at the delayed posttest in the baseline 
iteration (iteration A, no MFI) and from approximately 
30%–40% at the pretest to approximately 12% (iteration 
B), 6% (iteration C), and 5% (iteration D) at the delayed 
posttest in the intervention iterations (figure 5). The find-
ing that the posttest to delayed posttest time period had a 
significant slope for all outcome measures indicated that 
the growth in knowledge and abstract reasoning, as well 
as the reduction in misconceptions, continued even after 
the posttest (i.e., during units on phylogenetics, diversity, 
matter and energy; figure 5). Most of the learning, how-
ever, occurred from the pretest to the posttest (i.e., larger 
ω2

P value for CINS and core concepts; OR values further 
from 1 for MODC and misconceptions). The semester-
specific effect sizes of instruction increased as AL and 
MFI dosage increased (table  3). The results from the 
final iteration were replicated with the novice instructor 
(supplemental figure S1 and section 4.2 of the supplemen-
tal material).

AL was found to be a significant contributor to evolu-
tion learning. Specifically, including the percentage of 
AL into the model (model A) significantly improved the 
model above and beyond the control model (model C) 
for all evolution knowledge outcome variables (table  4). 

Figure 4. Visualization of the model comparison design 
used in this study.

1105-1117-biac073.indd   1111 12/10/22   2:38 PM

D
ow

nloaded from
 https://academ

ic.oup.com
/bioscience/article/72/11/1105/6679362 by SU

N
Y Stony Brook U

niversity user on 03 N
ovem

ber 2022



Education

1112   BioScience • November 2022 / Vol. 72 No. 11 https://academic.oup.com/bioscience

Furthermore, the growth in evolution knowledge from the 
pretest to the posttest was conditional on the amount of 
AL: the higher the percentage of AL, the larger the growth 
(i.e., change in slope) from the pretest to the posttest 
for all outcome measures and with a medium effect size 
(CINS, B = 0.30, β = 0.15, ω2

P = 0.02, p < .001; core con-
cepts, B = 0.03, β = 0.34, ω2

P = 0.08, p < .001; misconcep-
tions, OR = 0.49, β = −1.46, p < .001; MODC, OR = 2.11, 
β = 1.23, p < .001). This finding is visualized by pretest–
posttest slope steepness with an increasing percentage of 
AL (figure 6a–d). However, although evolution knowledge 
continued to grow significantly from the posttest to the 
delayed posttest (see above), the magnitude of growth was 
not conditional on the amount of AL. In other words, all 
course iterations showed gains in evolution knowledge at 
a similar rate during this time period, regardless of the 
amount of AL in the prior period. This finding is visual-
ized by the parallel posttest and delayed posttest slopes in 
figure 6e–g (see model A in supplemental table S6a–d for 
more details). Although we have evidence that participa-
tion incentive (e.g., a required posttest, a voluntary delayed 
posttest; see Sbeglia and Nehm 2022) did not affect assess-
ment performance, even if it did, evolution knowledge 
continued to increase from the posttest (required) to the 
delayed posttest (voluntary) in all course iterations, and 
the general finding that higher amounts of AL and MFI 

produced larger rates of change through 
time still holds.

MFI was found to be a significant and 
unique contributor to evolution learn-
ing, and this contribution was above and 
beyond that of AL alone. Specifically, add-
ing the percentage of MFI to the model 
(model AM) significantly improved the 
model above and beyond the AL-only 
model (model A) for all outcome mea-
sures (table  4). Furthermore, the growth 
in evolution knowledge was con-
ditional on the amount of MFI from 
the pretest to the posttest; the higher 
the percentage of MFI, the larger the 
growth (i.e., change in slope) during this 
period for all outcome measures (CINS, 
B = 0.97, β = 0.22, ω2

P = 0.02, p < .001; core 
concepts, B = 0.04, β = 0.20, ω2

P = 0.02, 
p < .001; misconceptions, OR  = 0.64, 
β = −0.90, p < .001; MODC, OR = 1.88, 
β = 1.06, p < .001; see  figure 7a–d). 
However, although evolution knowledge 
continued to increase significantly from 
the posttest to the delayed posttest (as 
reported above), the growth during this 
period was not conditional on the amount 
of MFI. This finding is visualized by the 
parallel posttest to delayed posttest slopes 
for all doses of the percentage of MFI 

in  figure 7e–g. See model AM in supplemental table S6a–d 
for additional detail.

The percentage of AL ∩ MFI did not significantly con-
tribute to evolution learning above and beyond the separate 
contributions of AL and MFI (the LRTs between model AM 
and AMI were not significant for any outcome variables). 
Therefore, the growth in evolution knowledge through time 
was not conditional on the amount of intersection between 
AL and MFI. See model AMI in supplemental table S6a–d 
for additional detail.

The results for the four evolution understanding measures 
(CINS, ACORNS core concepts, ACORNS misconceptions, 
ACORNS MODC) were similar in that they showed that 
AL and MFI contributed to evolution learning. However, 
ACORNS core concepts and CINS showed different sig-
nificance patterns for the percentage of AL depending on 
whether the percentage of MFI was included in the model. 
Specifically, in model AM (which included the percentage 
of MFI and the percentage of AL), the growth in evolution 
knowledge through time was conditional (although with a 
very small effect size) on the amount of AL for ACORNS core 
concepts (B = 0.01, β = 0.14, ω2

P = 0.005, p < .01; supplemental 
figure S3a). This was not the case for the CINS (supplemental 
figure S3d). Therefore, ACORNS core concepts appears to 
have accounted for more unique variation in the growth of 
normative evolution knowledge than the CINS.

Figure 5. Raw scores for ACORNS core concepts (a), the percentage of sample 
with misconceptions (b), the percentage of sample with consistent scientific 
model type (c), and CINS (d) across all four course iterations. The error bars 
represent two standard errors. The patterns for the CINS in iterations C and 
D are comparable to the patterns found for the CANS in the same course 
iterations (see supplemental figure S2).
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Active learning, misconceptions, and biology teaching
Although AL has become a focus in biology education in 
recent years, misconceptions in general and evolution mis-
conceptions in particular have been issues of educational 
concern for at least a century (Osbern 1922). Constructivist 
perspectives on learning emphasize that effective teach-
ing requires engaging with student ideas about how the 
world works (NRC 2001). Nevertheless, remarkably little is 
known about whether and to what extent misconceptions 
are explicitly targeted in undergraduate biology education 
or whether addressing them is worth the risk of reinforce-
ment and perpetuation (cf. Lewandowsky et  al. 2012). To 
our knowledge, the only large-scale study that asked biology 

instructors if they addressed evolution misconceptions was 
Andrews and colleagues (2011). In a survey of 33 instruc-
tors (out of 88 invited), they found that many instructors 
in this subsample addressed misconceptions in some way. 
However, the amount of instructional time devoted to 
misconceptions was not measured, and the data gathered 
were based on self-reports (versus empirical observations). 
Intentional study designs that investigate the impacts of 
varying amounts of both AL and MFI on biology learning 
outcomes are needed. Such designs may benefit from the 
conceptualization of classroom activities as occurring along 
a gradient (see figure 1), as has been done in this study, as 
opposed to presence or absence.

Table 3. Effect size (standardized coefficients, odds ratios, and partial omega squared) of instruction for each evolution 
understanding measure in each course iteration (generated from model C)

Pre to post (time 1) Post to delayed post (time 2)

Measure Course 
iteration

β OR ω2
P β OR ω2

P

CINS A 0.19 – 0.18 – – –

B 0.36 – 0.4 – – –

C 0.43 – 0.48 – – –

D 0.39 – 0.46 – – –

Core concepts A 0.29 – 0.35 0.07 – 0.03

B 0.46 – 0.55 0.10 – 0.06

C 0.55 – 0.63 0.09 – 0.06

D 0.64 – 0.73 0.07 – 0.07

Misconceptions A −0.6 0.57 – −0.5 0.63 –

B −1.41 0.30 – −0.56 0.62 –

C −2.5 0.13 – −0.70 0.57 –

D −3.37 0.08 – −0.48 0.70 –

MODC A 1.29 3.62 – 0.28 1.32 –

B 1.95 7.58 – 0.44 1.58 –

C 3.22 24.52 – 0.60 1.81 –

D 3.97 47.17 – 0.70 1.96 –

Note: partial omega squared (ω2
P): small = 0.01, medium = 0.06, large = 0.14 (Lakens 2013); odds ratio (OR): small = 1.68 (0.59), medium = 

3.47 (0.29), large = 6.7 (0.15) (Chen et al. 2010); β is the standardized coefficient. All effect sizes are significant at p < .001

Table 4. Likelihood ratio test results.
Model comparison Instrument Bayesian information criteria (BIC) Chi squared df p

Control model versus 
AL-only model

CINS BICmodelC = 25,890, BICmodelA =25,850; ∆BIC = 40 56.258 2 < .001

ACORNS core 
concepts

BICmodelC =21,530, BICmodelA = 21,334; ∆BIC = 196 222.76 3 < .001

ACORNS 
misconceptions

BICmodelC = 8095.4, BICmodelA = 7982.2; ∆BIC = 113.2 140.46 3 < .001

ACORNS MODC BICmodelC = 4963.6, BICmodelA = 4842.0, ∆BIC = 121.6 146.86 3 < .001

AL-only model versus 
AL+MFI model

CINS BICmodelA = 25,850, BICmodelAM = 25,831; ∆BIC = 19 34.87 2 < .001

ACORNS core 
concepts

BICmodelA = 21,334, BICmodelAM = 21,323; ∆BIC = 11 38.69 3 < .001

ACORNS 
misconceptions

deviancemodelA = 7845.6, deviancemodelAM = 7821.9,  
∆ deviance = 23.7

23.66 3 < .001

ACORNS MODC BICmodelA = 4842.0, BICmodelAM = 4839.2, ∆BIC = 2.8 28.04 3 < .001
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Figure 6. Marginal effects plots of model A. The slope of the fitted values from the pretest to the posttest for each active 
learning (AL) dosage is shown in panels (a)–(d), and the slope of the fitted values from the posttest to the delayed posttest 
for each AL dosage is shown in panels (e)–(g). The shaded areas around the lines represent the 95% confidence intervals.

Figure 7. Marginal effects plots of model AM. The slope of the fitted values from the pretest to the posttest for each 
misconception-focused instruction (MFI) dosage is shown in panels (a)–(d), and the slope of the fitted values from the 
posttest to the delayed posttest for each MFI dosage is shown in panels (e)–(g). The shaded areas around the lines represent 
the 95% confidence intervals.
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The students in all of the course iterations experienced 
large evolution knowledge gains that were not instructor 
dependent. Furthermore, higher doses of AL were signifi-
cantly associated with larger increases in evolution knowledge 
(measured using the CINS and ACORNS core concepts) and 
abstract reasoning about evolution (ACORNS MODC) and 
with larger declines in evolution misconceptions (ACORNS 
misconceptions). For all evolution knowledge measures, 
this pattern occurred only from the pretest to the posttest, 
and after this point, all AL dosages were associated with a 
similar (though still significant) rate of increase in evolution 
understanding. Although no explicit evolution instruction 
occurred between the posttest and the delayed posttest, the 
significant rate of change between these two timepoints could 
be due to the incorporation of evolution examples in the 
remaining units of the course (e.g., plant evolution).

In their influential study, Freeman and colleagues (2014) 
compared student outcomes in AL with traditional courses 
and reported a standardized mean difference (Hedges's g) 
of approximately 0.30 in postcourse knowledge scores in 
biology classrooms. To compare findings from Freemen 
and colleagues (2014), which was limited to the presence or 
absence of AL, with those of the present study, the course 
iteration with the lowest-intensity AL dosage (iteration A) 
was compared with other iterations (iterations B, C, and D). 
The resulting Hedges's g values from the present study were 
in line with Freeman and colleagues (2014; A versus B  = 
0.13, A versus C = 0.25, A versus D = 0.46). Freeman and 
colleagues (2014) also reported an OR for failing a course of 
1.95 in traditional versus AL classrooms, which is similar to 
our reported effect of AL on whether or not students have 
misconceptions (OR  = 0.49, equivalent to approximately 
2.00) and consistent scientific models (OR  = 2.11). In the 
current study, we did not use course failure versus passing 
as an outcome variable because we focused on only one unit 
of the course.

As was described above, the results were clear that the 
intensity (or dose) of AL (up to approximately 36% of 
instructional time) was associated with gains in normative 
ideas and reasoning abstraction and with the loss of mis-
conceptions. The results were also clear that higher doses 
of MFI (up to approximately 12.5%) were significantly 
associated with these same outcomes: larger increases 
in normative ideas (CINS, ACORNS core concepts) and 
abstract reasoning (ACORNS MODC) and larger declines 
in evolution misconceptions (ACORNS misconceptions). 
Importantly, this impact was above and beyond the con-
tribution of AL alone. Although these findings are encour-
aging, recent work suggests that the impacts of AL may 
continue to increase at even higher intensities than were 
addressed in this study. Theobald and colleagues (2020), 
for example, reported that very-high-intensity AL condi-
tions (more than 60% AL) were associated with larger 
reductions in achievement gaps between minoritized and 
nonminoritized students. Furthermore, although no prior 
work has evaluated how the dosage of MFI relates to 

learning outcomes, the impacts of MFI may also continue 
to increase at even higher intensities. Indeed, implement-
ing higher intensity AL and MFI conditions (to fill the 
empty space in figure 1) and disaggregating results by stu-
dent backgrounds are essential next steps.

In addition to the amount of MFI, the type and quality 
of misconception treatment as well as the specific miscon-
ception content addressed may also contribute to learning 
outcomes, but these topics were beyond the scope of this 
study. Indeed, all misconceptions (supplemental table S1) 
and treatment types (e.g., video, active, collaborative work, 
or individual work; supplemental table S4) were treated as 
equal even though it is likely that they differ in fundamental 
ways (see Introduction). However, all treatments attempted to 
promote cognitive dissonance in students, which is known to 
be an essential feature of effective MFI (Guzzetti et al. 1993).

Few studies have documented the frequencies, types, and 
content of MFI in undergraduate biology classrooms, and evi-
dence-based frameworks outlining the salient dimensions of 
MFI are lacking. For this reason, this study focused on whether 
the amount of MFI was associated with learning outcomes, 
but future work is clearly needed to evaluate the contributions 
of treatment types, misconception content, and quality (e.g., 
promoting cognitive dissonance). Arguably, by including the 
percentage of AL ∩ MFI in model AMI, we accounted for one 
possible dimension of MFI type (i.e., use of AL) that could pos-
sibly contribute to learning outcomes. However, adding this 
variable did not significantly improve the model according to 
LRTs, and the percentage of MFI generally remained a signifi-
cant contributor to evolution learning outcomes.

The results from this study show remarkable consistency 
with Andrews and colleagues’ (2011) finding that address-
ing misconceptions was positively associated with evolution 
learning gains. Unfortunately, we were unable to compare 
the size of the effect of their misconception classes (i.e., 
addressed or not) with ours for a few reasons. First, Andrews 
and colleagues (2011) used only class level (versus student 
level) variables in their models, making the resulting coef-
ficients incomparable. Second, the two studies quantified 
instructor use of misconceptions differently. Andrews and 
colleagues (2011) used instructor self-reports to document 
whether they addressed misconceptions and whether they 
explained why those misconceptions were incorrect. Our 
study used archived Echo videos to quantify the amount 
of MFI and confirm that all misconception-related activi-
ties (supplemental table S1) did indeed take place. Despite 
similar findings about the role of MFI in evolution learning 
outcomes, Andrews and colleagues (2011) and the present 
study were not aligned in terms of the roles that AL played 
in these outcomes. Specifically, the present study reported a 
significant contribution of AL, and Andrews and colleagues 
(2011) did not. See section 5 of the supplemental material 
for an expanded discussion of this point.

Future work on the role of AL and MFI in biology learning 
must consider several aspects of study design. First, AL and 
MFI were correlated in the present study, and experimental 
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designs that independently vary AL and MFI will be impor-
tant next steps for deepening our understanding of how 
to most effectively affect learning in introductory courses. 
Second, student attendance patterns may affect study results. 
Although we did not document attendance on a per-student 
basis, the course in this study had a relatively high overall 
attendance (more than 80% as measured by clicker data); 
courses with lower attendance may generate different find-
ings. Third, future work must also consider the choice of 
instruments used to measure learning. This study used 
multiple instruments that adopt different perspectives on 
knowledge that may affect the inferences one might make 
about the factors contributing to learning (cf. Freeman et al. 
2014). For example, ACORNS misconceptions and MODC 
measure different aspects of evolution learning that are not 
entirely captured by ACORNS core concepts or the CINS and 
show subtle differences in how they interact with instructional 
interventions such as AL. Finally, our results suggest that 
researchers who include both AL and MFI in the same model 
(e.g., Andrews et  al. 2011) could draw different conclusions 
about the contribution of AL in evolution learning depending 
on whether they use the CINS or ACORNS core concepts as 
their measure of evolution knowledge.

This study has implications for teaching, learning, and 
research in biology domains in addition to evolution. Over 
the past century, biology educators have published hundreds 
of studies (e.g., sources in https://archiv.ipn.uni-kiel.de/stcse) 
documenting numerous student misconceptions in cell biol-
ogy, photosynthesis and respiration, genetics, inheritance, 
gene expression, speciation, phylogenetics, genetic drift, mat-
ter and energy, and ecology (e.g., Driver et  al. 1994, Baum 
et  al. 2005, Wilson et  al. 2006, Gregory 2008, Novick and 
Catley 2008, Halverson et al. 2011, Kinlock et al. 2020, Catley 
et al. 2013). This work has been extended in recent decades 
by biology education researchers through the development of 
many concept inventories designed to measure both miscon-
ceptions and normative ideas for a given biology topic (see 
Nehm 2019 for a review). These research-based assessment 
tools exist for many biology topics and could be used to help 
more faculty become aware of student misconceptions and 
guide the design of AL experiences that effectively engage stu-
dents in thinking more deeply about their alternative perspec-
tives on how the living world works. Biologists and biology 
educators should work together to better understand the roles 
that the intensity, type, and quality of MFI have in enhancing 
AL outcomes in biological domains beyond evolution.

So, is active learning using normative scientific 
ideas enough?
Our results demonstrate that explicitly addressing miscon-
ceptions produced significant and meaningful evolution 
learning above and beyond AL alone. However, the presence 
and extent of MFI in prior AL studies remains underspeci-
fied. Indeed, the most influential meta-analysis demonstrat-
ing the benefits of AL across STEM disciplines (Freeman 
et al. 2014) did not include MFI as a variable. This raises the 

question of whether variation in AL efficacy (e.g., Andrews 
et al. 2011, Freeman et al. 2014’s figure 1a, Theobald et al. 
2020’s figure 2) is related to the presence and intensity of 
MFI during learning experiences. Explicit attention to both 
high-intensity AL and MFI is likely to enhance learning out-
comes in many areas of biology education.
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