1.     Daphne Meza, L.A., David A. Rubenstein, Wei Yin, A Shearing-Stretching Device That Can Apply Physiological Fluid Shear Stress and Cyclic Stretch Concurrently to Endothelial Cells J. Biomech Eng., 2016. 138(3).
  2.     Endemann, D.H. and E.L. Schiffrin, Endothelial dysfunction. J Am Soc Nephrol, 2004. 15(8): p. 1983-92.
  3.     Virani, S.S., et al., Heart Disease and Stroke Statistics-2021 Update: A Report From the American Heart Association. Circulation, 2021. 143(8): p. e254-e743.
  4.     Morel, S., et al., Effects of Low and High Aneurysmal Wall Shear Stress on Endothelial Cell Behavior: Differences and Similarities. Front Physiol, 2021. 12: p. 727338.
  5.     Félétou, M., The Endothelium, Part I: Multiple Functions of the Endothelial Cells — Focus on Endothelium-Derived Vasoactive Mediators. Colloquium Series on Integrated Systems Physiology: From Molecule to Function, 2011. 3(4): p. 306.
  6.     Ravindranath, K.S., Endothelial Dysfunction in Hypertension. 2012.
  7.     Lobato, N.S., et al., Mechanisms of Endothelial Dysfunction in Obesity-Associated Hypertension. Brazilian Journal of Medical and Biological Research, 2012. 45(5): p. 392-400.
  8.     Prystopiuk V, F.B., Simon CS, Liashkovich I, Pasrednik D, Kronlage C, Wedlich-Söldner R, Oberleithner H, Fels J., A two-phase response of endothelial cells to hydrostatic pressure. J Cell Sci., 2018.
  9.     Traub, O.a.B.C.B., Laminar Shear Stress. Arteriosclerosis, Thrombosis, and Vascular Biology 1998. 18(5): p. 677-685.
  10.   Michel E. Safar and Harry Struijker Boudier, e.a., Vascular Development, Pulse Pressure, and the Mechanisms of Hypertension. Hypertension, 2005.
  11.   Cedars, Endothelial Function Testing.
  12.   Nikfarjam, L., and Parvaneh Farzaneh, Prevention and Detection of Mycoplasma Contamination in Cell Culture. Cell Journal (Yakhteh), 2011. 12(4): p. 203-212.
  13.   Niehues, H., et al, Know Your Enemy: Unexpected, Pervasive and Persistent Viral and Bacterial Contamination of Primary Cell Cultures. Experimental Dermatology. 29(7): p. 672-676.
  14.   Paul, R., et al., Shear Stress Related Blood Damage in Laminar Couette Flow. Artificial Organs, 2003. 27(6): p. 517-529.
  15.   Lovecchio, J., A Standalone Bioreactor System to Deliver Compressive Load under Perfusion Flow to HBMSC-Seeded 3D Chitosan-Graphene Templates. Nature News.
  16.   Physics – Young’s Modulus. University of Birmingham.
  17.   Phlbi.org, Artificial Blood Substitutes.
  18.   Liepsch, D.e.a., Studies of fluids simulating blood-like rheological properties and applications in models of arterial branches. Biorheology, 1991. 28: p. 1-2.
  19.   Balaguru, U., Sundaresan, L., Manivannan, J. et al., Disturbed flow mediated modulation of shear forces on endothelial plane: A proposed model for studying endothelium around atherosclerotic plaque. Sci Rep 6, 2016.
  20.   Eric A. Jaffe, R.L.N., Carl G. Becker, C. Richard Minick, Culture of Human Endothelial Cells Derived from Umbilical Veins. IDENTIFICATION BY MORPHOLOGIC AND IMMUNOLOGIC CRITERIA. The Journal of Clinical Investigation, 1973.
  21.   A. D. van der Meer, A.A.P., J. Feijen, I. Vermes, Analyzing shear stress-induced alignment of actin filaments in endothelial cells with a microfluidic assay. Biomicrofluidics, 2010.
  22.   Marsick, B., Why is basal media and supplementation important in primary cell culture? 2016.
  23.   Charis-P. Segeritz, L.V., Cell Culture, Growing Cells as Model Systems In Vitro. Basic Science Methods for Clinical Researchers, 2017.
  24.   Etienne Roux, P.B., Pascale Dufourcq, Thierry Couffinhal1, Fluid Shear Stress Sensing by the Endothelial Layer. 2020.
  25.   Guilhem Velve-Casquillas, M.L.B., Matthieu Piel,  Phong T. Trana, Microfluidic tools for cell biological research. Nano Today, 2010.
  1.   Verma S., W.C.H., Li S.H., Dumont A.S., Fedak P.W., Badiwala M.V., Dhillon B., Weisel R.D., Li R.K., Mickle D.A., et al., A self-fulfilling prophecy: C-reactive protein attenuates nitric oxide production and inhibits angiogenesis. Circulation, 2002.
  2.   Felix Kurth, E.G., Sarah Heub, Diane Ledroit, Samantha Paoletti, Kasper Renggli, Vincent Revol, Marine Verhulsel, Gilles Weder, Frédéric Loizeau, Organ-on-a-chip. Engineered Microenvironments for Safety and Efficacy Testing, 2020: p. 47-130.
  3.   BrownUniversityENGN, Peristaltic Pump and Perfusion Bioreactor.
  4. Gorman, L et al. “Growth requirements of endothelial cells in culture: variations in serum and amino acid concentrations.” Nutrition (Burbank, Los Angeles County, Calif.) vol. 12,4 (1996): 266-70. doi:10.1016/s0899-9007(96)90854-0
  5. Chai-Hsien Hsu, C. C., Albert Folch (2004). “Microcanals” for micropipette access to single cells in microfluidic environments.”

Picture References

1.“Perfusion Flow Chamber.” https://www.elveflow.com/, https://www.elveflow.com/microfluidic-reviews/microfluidics-for-cell-biology/imaging-and-microscopy-perfusion-chambers/. Accessed 30 Nov. 2021.

2.BioFlex Culture Plates. Flexcell International Corporation,                               https://www.flexcellint.com/product/bioflex-  culture-plates. Accessed 11 Nov. 2021.

3. “The Effects of Particle Size, Shape, Density and Flow Characteristics on Particle Margination to     Vascular Walls in Cardiovascular Diseases.” Researchgate.net, ResearchGate,   https://www.researchgate.net/figure/Baseline-endothelial-shear-stress-patterns-along-the-course-of-a-   coronary-artery_fig1_315827596. Accessed 30 Nov. 2021.

4.“Microfluidic Applications.” https://www.dantecdynamics.com/, DanteCDynamics, https://www.dantecdynamics.com/solutions-applications/applications/microfluidics/. Accessed 1 Dec. 2021.

5.  “Extended Hand Holding A Heart.” Https://Chronicdisease.org/, National Association of Chronic Disease   Directors, https://chronicdisease.org/page/cardiovascularhealth/. Accessed 1 Dec. 2021.