Icelandic Low and Azores High Migrations Impact Florida Current Transport in Winter Supplemental Material
Journal of Physical Oceanography
https://doi.org/JPO-D-20-0108.1
Sultan Hameed, ${ }^{\text {a }}$ Christopher L. P, Wolfe, ${ }^{\text {a }}$ Lequan Chi ${ }^{\text {b }}$.
${ }^{\text {a }}$ School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York
${ }^{\mathrm{b}}$ Skidaway Institute of Oceanography, University of Georgia, Savannah, Georgia
Corresponding author: Sultan Hameed, sultan.hameed@stonybrook.edu

Figure S1: Anomaly of SSH (cm) in the North Atlantic (a) 1, (b) 5, (c) 15, and (d) 45 days after application of wind stress anomalies associated with a two-standard-deviation value of IL longitude. The color scale is logarithmic for values exceeding $\pm 1 \mathrm{~cm}$.

Figure S2: As in Figure S1, but for the wind stress pattern associated with the AH longitude.

Figure S3: (il_lon_ssh_coast.mp4) Animation of evolution of sea surface height anomaly along the North American coast after application of wind stress anomalies associated with a 2-standard-deviation value of longitude of the Icelandic low. The Florida Strait is marked by the horizontal dashed line. Note that the southward-propagating signal along the U.S. coast wraps around the tip of Florida.

Figure S4: (ah_lon_ssh_coast.mp4) As in Figure S4, but for the longitude of the Azores high. In this case, the southward-propagating signal along the U.S. coast does not reach the tip of Florida.

