
1. Introduction
Ocean mesoscale eddies, with scales of 10–100s of kilometers, represent the majority of the kinetic energy of the 
ocean circulation (Ferrari & Wunsch, 2009). Stirring by mesoscale eddies plays an important role in the transport 
and mixing of oceanic tracers, which impacts ocean dynamics (Hallberg & Gnanadesikan, 2006; J. Marshall & 
Radko, 2003, 2006; Wolfe & Cessi, 2009, 2010) and biogeochemistry (Steinberg et al., 2019; McGillicuddy Jr 
et al., 2003; Siegenthaler, 1983; Gnanadesikan et al., 2015). The ocean components of most climate models do 
not resolve mesoscale eddies and their impact on tracer stirring must be parameterized. The standard parame-
terizations mimic two aspects of mesoscale eddy stirring: the advection of buoyancy or thickness that flattens 
isopycnals (“GM”, Gent & McWilliams, 1990; Gent et al., 1995, see Table 1 for a list of abbreviations used in 
this paper) and diffusion of tracers along isopycnals that reduces mean tracer variance (“Redi”, Redi, 1982). 
These two schemes can be formulated as a single rank-two diffusivity tensor with its symmetric part representing 
the Redi scheme and its antisymmetric part representing the GM scheme (Griffies, 1998). Model simulations 
are sensitive to the magnitude and distribution of the coefficients of both the GM and Redi parameterizations (J. 
Marshall & Radko, 2003; Gnanadesikan et al., 2015; J. Marshall et al., 2017; Jones & Abernathey, 2019), and so 
these coefficients must be constrained by physical insight or measurement. Many theoretical studies have focused 
on the GM coefficient (e.g., Visbeck et al., 1997; Cessi, 2008; D. P. Marshall & Adcroft, 2010; D. P. Marshall 
et al., 2012; Jansen et al., 2015), leaving the Redi coefficient less well constrained in climate models.
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Observational studies have estimated the horizontal distribution of the isopycnal tracer diffusivity (i.e., the 
Redi coefficient) using satellite (J. Marshall et  al.,  2006; Ferrari & Nikurashin,  2010; R.  P.  Abernathey & 
Marshall, 2013) and in situ data (Roach et al., 2018; Zhurbas et al., 2014; Zhurbas & Oh, 2003), but direct obser-
vations of the full-depth diffusivity is only available at two sites: one in the North Atlantic (Ledwell et al., 1998) 
and one in the Southern Ocean (Tulloch et al., 2014). Studies have inferred the vertical structure of diffusiv-
ity based on the mixing length theory (MLT, Prandtl, 1925; Cole et al., 2015; Naveira Garabato et al., 2011) 
and variations that account for mean flow suppression (suppressed mixing length theory or SMLT, Ferrari & 
Nikurashin, 2010; Klocker et al., 2012; Bates et al., 2014; Groeskamp et al., 2020).

Despite the wide use of MLT and SMLT in ocean studies, its applicability to estimating full-depth diffusivity 
profiles is still unclear. Assumptions about the form of the mixing length for MLT (or unsuppressed mixing 
length for SMLT) vary from study to study. Some studies assume that the unsuppressed mixing length is depth-in-
dependent and is given by either the observed eddy length scale (Bates et al., 2014; Roach et al., 2018) or the 
local Rossby deformation radius (Groeskamp et  al.,  2020; Wei & Wang,  2021). This assumption leads to a 
vertical structure of the diffusivity that is controlled by the vertical structure of the rms eddy velocity and mean 
flow. Other studies assume that the mixing length does vary in the vertical, and estimate this structure from 
the Eulerian tracer variance (Cole et  al.,  2015) or Lagrangian particle dispersion (Chen et  al.,  2014; Griesel 
et al., 2014; Wolfram & Ringler, 2017). Reconciling these assumptions requires additional understanding of the 
vertical structure of eddy properties and a comprehensive comparison of MLT and SMLT against the diagnosed 
full-depth diffusivity in a broad range of flow regimes.

Additionally, many studies estimate the diffusivity as a scalar, either by assuming that mixing is isotropic 
along isopycnals (e.g., Adcroft et al., 2019; Redi, 1982) or by only estimating the cross-stream diffusivity (e.g., 
Ferrari & Nikurashin, 2010; R. Abernathey et al., 2013; Groeskamp et al., 2020). However, isopycnal mixing 
has been revealed to be broadly anisotropic (e.g., Rypina et al., 2012; Fox-Kemper et al., 2013; S. D. Bachman 
et al., 2020), and diffusivity is better described by a tensor (Fox-Kemper et al., 2013). Accounting for the anisot-
ropy of the mixing is important for accurate representation of eddy transport in parameterizations (R. D. Smith & 
Gent, 2004; S. D. Bachman et al., 2020; Stanley et al., 2020). Both Eulerian (S. Bachman & Fox-Kemper, 2013; 
Fox-Kemper et al., 2013; S. D. Bachman et al., 2015, 2020) and Lagrangian (Chen & Waterman, 2017; Kamenk-
ovich et al., 2015; Rypina et al., 2012; Wolfram et al., 2015) methods have been used to estimate the anisotropy of 
mixing, and these estimates are usually consistent (Fox-Kemper et al., 2013). A feature of this anisotropy is that 
mixing is typically much stronger in the direction of the mean flow than across it (S. D. Bachman et al., 2020), 
which could be due to the enhancement of along-stream mixing by mean flow shear (K. S. Smith, 2005; K. S. 
Smith, 2007a) or the suppression of cross-stream mixing by eddy propagation relative to the mean flow (Ferrari 
& Nikurashin, 2010; Klocker et al., 2012). A complete parameterization accounting for this anisotropy requires 
understanding the scaling of both along- and cross-stream diffusivities.

The vertical structure of tracer diffusivity tensor was recently examined by S. D. Bachman et al. (2020). They 
proposed an anisotropic parameterization in which the cross-stream diffusivity is equal to the GM diffusivity and 
ratio of the along-stream to the cross-stream diffusivity is randomly selected from an exponential distribution. 
This parameterization compared favorably to the vertical profile of the global horizontal average of the diffu-
sivity diagnosed from a high-resolution global ocean model using a multiple tracer inversion method. However, 
it is unclear how to interpret this comparison, since a horizontally averaged horizontal diffusivity is only mean-
ingful if the diffusivity is spatially constant—multiplying the averaged diffusivity by a gradient (averaged or 
not) is unlikely to recover the appropriate flux. The vertical structure of eddies is influenced by local baroclinic 
instability, which varies with location (K. S. Smith, 2007a; K. S. Smith & Marshall, 2009; Tulloch et al., 2011), 
and the vertical structure of the cross-stream diffusivity is even more complex due to mean flow suppression in 
regions with differing dynamics (Bates et al., 2014; Cole et al., 2015; Groeskamp et al., 2020; Klocker & Aber-
nathey, 2014). The extent to which extant theories for isopycnal mixing account for this local variability has not 
been thoroughly studied.

In this study we address whether MLT and SMLT adequately describe the vertical variation and anisotropy of 
tracer diffusivities and whether the mixing length is depth-independent. This study considers the vertical struc-
ture of the isopycnal diffusivity in an idealized basin circulation model that contains multiple gyres, western 
boundary currents and a circumpolar current like the Antarctic Circumpolar Current. We investigate the vertical 
profile of diffusivity at various locations that are controlled by different dynamics, in contrast to S. D. Bachman 
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et al. (2020) who study the profile of globally averaged diffusivity. The 3D diffusivity tensor is diagnosed using 
the multiple tracer inversion method of S. D. Bachman et al. (2015) to provide a “ground truth” for comparison 
to scaling theories for the along- and cross-stream diffusivities. This study verifies MLT and SMLT scaling 
in  the upper ocean, but also finds that the mixing regime is distinctly different below the thermocline. Here, the 
diffusivity scales like the eddy kinetic energy times a depth-independent mixing time. The difference between 
these mixing regimes is attributed to the dominance by the nonlinear and linear processes in the upper and deep 
ocean, respectively. We propose an improved theory which combines the effects of both nonlinear and linear 
mixing processes.

The remainder of the manuscript is organized as follows. Section 2 introduces the mixing theories examined 
in this study. Section 3 describes the configuration of the numerical model and the multiple tracer inversion 
method used to diagnose the diffusivity tensor. Section 4 presents the overall properties of the magnitude and 
orientation of the eigenvalues and eigenvectors of the symmetric part of the diffusivity tensor and their vertical 
structures. The full-depth scaling of the along- and cross-stream diffusivities (first two eigenvalues) is discussed 
in Section 5. Section 6 offers a summary and conclusions.

Additional material may be found in appendices. A description of the coherent eddy identification and tracking 
algorithm is given in Appendix A. Appendix B contains a discussion of the robustness of the diagnosed diffusiv-
ity and its ability to reconstruct the observed tracer fluxes, and the geographical distribution of diagnosed mixing 
length and time scales is given in Appendix C.

2. Theoretical Background
2.1. The Diffusivity Tensor

The eddy flux of a tracer with concentration C is often represented using the flux-gradient relationship

𝒖𝒖
′𝐶𝐶 ′ = −❑∇�̄�𝐶𝐶 (1)

where u is the 3D velocity and 𝐴𝐴 ❑ is a 3 × 3 diffusivity tensor. The averaging operator 𝐴𝐴 (⋅) is typically a some combi-
nation of a space and time mean over the scales of interest and is explicitly defined in Section 3.2. The primes 
are deviations from this average.

The diffusivity tensor can be decomposed into a sum of a symmetric and antisymmetric parts,

❑ = 𝖲𝖲 + 𝖠𝖠. (2)

The antisymmetric tensor, 𝐴𝐴 𝖠𝖠 , gives a skew tracer flux (Griffies, 1998) which behaves like a bolus velocity (Gent 
et al., 1995). This tensor is commonly used to parameterize the release of mean potential energy by mesoscale 

Abbreviation Description

EKE Eddy kinetic energy

FVU Fraction of variance unexplained

GM Gent and McWilliams (1990) parameterization

MLT Mixing length theory

MTT Mixing time theory

MITgcm Massachusetts Institute of Technology general circulation model

PV Potential vorticity

Redi Redi (1982) isopycnal mixing formulation

rms Root mean square

SLT Steering level theory

SMLT Suppressed mixing length theory

SSH Sea surface height

Table 1 
List of Abbreviations Used in This Paper
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eddies. It is important for ocean dynamics, but has no contribution to the tracer variance budget. In contrast, the 
symmetric tensor, 𝐴𝐴 𝖲𝖲 , determines the diffusive transport of tracers and represents an exchange of tracer variance 
between resolved and unresolved scales. The symmetric tensor reduces (increases) resolved tracer variance if it 
is positive (negative) definite. Any increase in resolved variance must be local, since eddy diffusion must reduce 
global tracer variance to balance dissipation. This work aims to study the properties of the tracer diffusion, and 
so focuses on the symmetric tensor.

The symmetric tensor can be diagonalized as

𝖲𝖲𝝋𝝋𝑖𝑖 = 𝜅𝜅𝑖𝑖𝝋𝝋𝑖𝑖, (3)

where κi (i = 1, 2, 3) are the three eigenvalues along the corresponding eigenvectors, φi (i = 1, 2, 3), which 
indicate the three orthogonal principal mixing directions. Mixing in the ocean is anisotropic, with the mixing 
along isopycnals generally much larger than that across isopycnals (Redi, 1982). This means that the largest two 
eigenvalues, κ1 and κ2, are expected to represent the mixing along isopycnals, while the smallest eigenvalue, κ3, 
represents the mixing across isopycnals. This study focuses on the isopycnal mixing, so will primarily analyze κ1 
and κ2. The isopycnal mixing is itself also often anisotropic in the ocean, with κ1 significantly larger than κ2 (S. 
D. Bachman et al., 2020). Hereafter, κ1 and κ2 are referred to as the “major” and “minor” diffusivity, respectively.

2.2. Mixing Length and Mixing Time Theories

Mixing length theory (MLT, Prandtl, 1925) is a common framework used to understand turbulent mixing. MTL 
expresses the eddy diffusivity as

𝜅𝜅MLT = ΓMLT𝑢𝑢rms𝐿𝐿𝐿 (4)

where ΓMLT is an order-one nondimensional mixing efficiency, urms is the rms eddy velocity,

𝑢𝑢rms =

√

𝑢𝑢′2 + 𝑣𝑣′2, (5)

and L is the “mixing length.” The mixing efficiency, ΓMLT, is traditionally included in the expression (Equation 4), 
although it can be absorbed it into the definition of the mixing length. We shall adopt this convention and set 
ΓMLT = 1 in the following. An alternate expression for the eddy diffusivity is due to Taylor (1922), who expressed 
the diffusivity as

𝜅𝜅MTT = EKE 𝜏𝜏𝜏 (6)

where EKE is the eddy kinetic energy 𝐴𝐴
(

EKE = 𝑢𝑢2rms∕2
)

 and τ is a “mixing time.” The subscript “MTT” stands for 
“mixing time theory” in analogy to mixing length theory. As with MLT, we have absorbed the (possibly differ-
ent) mixing efficiency into the definition of τ. With this convention for the mixing efficiencies, (Equation 4) and 
(Equation 6) are equivalent if L = urmsτ.

The mixing lengths and times are, in principle, functions of all three spatial dimensions and time. The eddies 
responsible for mesoscale mixing are usually coherent and nonlinear in the extratropics (Chelton et al., 2011). 
These eddies tend to have deep vertical extents (e.g., Zhang et  al.,  2014), so the distance between coherent 
eddies, corresponding to the mixing length (Gallet & Ferrari, 2020; Thompson & Young, 2006), is independent 
of depth—at least in the upper ocean where the eddies are strong (Bates et al., 2014). It is therefore reasonable 
to expect that the mixing length in Equation 4 is independent of depth where eddies are strong and nonlinear. 
We refer to the regime where the mixing length is depth independent as the “Prandtl regime.” In this regime, 
the vertical structure of diffusivity should follow the vertical structure of the rms velocity. We show in Section 5 
that the Prandtl regime provides a good description of mixing in our model when eddy mixing is nonlinear in the 
sense defined in Section 2.4.

Eddy velocities typically decay with depth and at sufficient depth may be weak enough that they no longer 
produce closed PV contours (Zhang et al., 2014). The flow field then resembles a superposition of linear waves 
more than a collection of nonlinear eddies. Results from the steering level theory show that the diffusivity asso-
ciated with linear waves takes the form of the EKE multiplied by a depth-independent time scale (e.g., K. S. 
Smith & Marshall, 2009; Griesel et al., 2015). In this regime, the diffusivity is given by (Equation 6) with a 
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depth-independent mixing time and the vertical structure of the diffusivity follows that of the EKE. We refer to 
this regime as the “Taylor regime” and show in Section 5 that the Taylor regime holds in our model when the 
eddies are linear, again in the sense defined in Section 2.4. In general, we expect both regimes to coexist at a 
single geographic location, with the Prandtl regime dominating the upper ocean and a transition with depth to 
the Taylor regime.

2.3. Suppressed Mixing Length/Steering Level Theory

In the presence of strong mean flows, mixing across the mean flow direction is suppressed relative to the predic-
tions of standard MLT and MTT due to the propagation of nonlinear eddies relative to the mean flow (e.g., R. 
Abernathey et al., 2010; Ferrari & Nikurashin, 2010). Ferrari and Nikurashin (2010) and Klocker et al. (2012) 
derive a suppressed mixing length theory (SMLT), which accounts for this suppression and show that the cross-
stream diffusivity is given by an expression equivalent to

𝜅𝜅SMLT(𝑧𝑧) =
𝜅𝜅MLT(𝑧𝑧)

1 +
𝜏𝜏2

𝐿𝐿2
[𝑐𝑐𝑤𝑤 − �̄�𝑢(𝑧𝑧)]

2

, (7)

where κMLT is the unsuppressed diffusivity given by (Equation 4), L is the unsuppressed mixing length, τ is the 
eddy decorrelation time scale, cw is the zonal eddy phase speed, and 𝐴𝐴 𝐴𝐴𝐴 is the zonal mean flow. While the essence 
of SMLT is captured by (Equation 7 and 4), other versions exist with L and τ replaced by other equivalent dimen-
sional parameters (e.g., a wavenumber and rate rather than a length and time scale) or which differ from (Equa-
tion 7 and 4) by the appearance of nondimensional constants of order one.

Steering level theory (SLT), based on linear stability analysis, produces a similar expression for the cross-stream 
diffusivity (Killworth, 1997; K. S. Smith & Marshall, 2009; Griesel et al., 2015); however, the interpretation is 
different since the mixing is considered to be due to the growth of linearly unstable waves. The resulting diffu-
sivity, κSLT, has a form similar to (Equation 7), except that κMLT is replaced by κMTT, and the decorrelation time 
scale, τ, corresponds to the growth or decay time scale of linear waves, which is depth-independent (Griesel 
et al., 2015). Note that the expressions κSMLT and κSLT are equivalent if L = urmsτ (Ferrari & Nikurashin, 2010; 
Griesel et al., 2015; Klocker et al., 2012).

Since the cross-stream diffusivity is suppressed by the mean flow, the along-stream diffusivity should be larger 
than the cross-stream diffusivity. Thus, we expect the symmetric diffusivity tensor, 𝐴𝐴 ❙ , to be anisotropic with the 
major diffusivity corresponding to along-stream mixing and minor diffusivity to cross-stream mixing.

2.4. A Nonlinearity Parameter

Surface mixing is dominated by nonlinear eddies in the extratropics and by linear waves in the tropics (Klocker 
& Abernathey, 2014; Klocker et al., 2016). Since eddy amplitudes decay with depth, a similar transition from 
nonlinear to linear mixing should occur in the vertical. As is discussed in Section 2.2 and 2.3, the vertical struc-
ture of diffusivity is likely to be different in the linear and nonlinear regimes, so it is necessary to have a criterion 
to distinguish these two regimes. A useful nonlinearity parameter is the ratio of the rms eddy velocity to the 
intrinsic propagation speed of coherent eddies,

𝑟𝑟 =
𝑢𝑢rms

𝑐𝑐
, (8)

where

𝑐𝑐 =

√

(𝒖𝒖coh − �̄�𝒖
𝑧𝑧
)
2 (9)

is the intrinsic propagation speed of coherent eddies, ucoh is their absolute propagation velocity, 𝐴𝐴 �̄�𝒖
𝑧𝑧 is the depth-av-

eraged mean flow. Chelton et al. (2011), Klocker and Abernathey (2014), and Klocker et al. (2016) propose simi-
lar nonlinearity parameters, although the details of the calculation differ slightly from Equation 8 and each other. 
The eddy propagation speed is obtained from coherent eddies that are identified and tracked from sea surface 
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height (SSH) snapshots as described in Appendix A. The Doppler shift by the depth-averaged mean flow, 𝐴𝐴 �̄�𝒖
𝑧𝑧 , is 

removed from the total velocity to obtain the intrinsic eddy speed.

The linear and nonlinear regimes are determined by r < 1 and r > 1, respectively. When r > 1, the rotational 
velocity of the eddy is larger than its propagation velocity, so the streamlines within the eddy will close in a frame 
co-moving with the eddy. If r < 1, the streamlines within the eddy are not closed and the eddy is wave-like.

3. Approach
3.1. Idealized Basin Circulation Model

This study uses an idealized configuration of Massachusetts Institute of Technology general circulation model 
(MITgcm, J. Marshall, Adcroft, et al., 1997; J. Marshall, Hill, et al., 1997; Campin et al., 2020) used by several 
previous studies (Wolfe & Cessi, 2009, 2010, 2011; Cessi et al., 2010; Cessi & Wolfe, 2009; Wolfe, 2014; Wolfe 
et al., 2008). The model is formulated in a two-hemisphere basin on an equatorial β-plane (β = 2.3 × 10 −11 m −1s −1) 
with a flat bottom. The model domain has width W = 2,440 km in zonal direction, length Ly = 9,880 km in merid-
ional direction and a uniform depth H = 2,440 m, with no-slip vertical walls on the boundaries, except for the 
southern eighth of the domain, where the flow is zonally reentrant (Figure 1). The horizontal resolution is 5.4 km. 
The vertical grid spacing varies from 13 m at the surface to 274 m at the bottom with a total of 20 vertical levels.

The model is forced by zonally uniform zonal winds (orange line in Figure 1c) and a relaxation to a zonally uniform 
surface temperature distribution (blue line in Figure 1c), an idealization of the forcing in the Atlantic Ocean. The 
dissipation is provided by the horizontal Laplacian viscosity (Ah = 12 m 2 s −1), horizontal biharmonic viscosity 
(A4 = 9 × 10 8 m 4 s −1), vertical viscosity (Av = 3 × 10 −4 m 2 s −1), and linear bottom drag (rd = 1.1 × 10 −3 m s −1). 
Buoyancy is a linear function of temperature only, which is advected using a seventh-order monotonicity-pre-
serving scheme (Daru & Tenaud, 2004) and diffused with a constant isotropic diffusivity (κ = 4.9 × 10 −5 m 2 s −1) 
in both horizontal and vertical directions. The model starts from equilibrated fields from previous studies (e.g., 
Wolfe & Cessi, 2009, 2010). The velocity, temperature and eddy statistics are averaged online and saved every 
half year for 30 years. Figure 1a shows the mean surface flow fields in the model. The model contains multiple 
gyres, boundary currents, and a zonally reentrant channel flow analogous to the Antarctic Circumpolar Current.

Figure 2 compares the model horizontal resolution to the zonally averaged Rossby deformation radius of the first 
baroclinic mode, Ld, calculated by solving a numerical Sturm-Liouville problem. The horizontal grid spacing is 
less than half of Ld, except near the northern boundary and in the zonally reentrant channel. Consistent with the 
results of (Tulloch et al., 2011), the length scale of the most unstable mode of baroclinic instability in the chan-
nel is about two times Ld (not shown), which is resolved by the model, except very near the southern boundary. 
Mesoscale eddies are therefore sufficiently resolved in the northern half of the channel, although we acknowledge 
that higher resolution would be ideal. Figure 1b gives a snapshot of the surface vorticity normalized by the local 
Coriolis frequency (i.e., the local Rossby number) and SSH anomaly fields, which shows that rich eddy fields are 
resolved in most parts of the model domain, including the channel. The Rossby number is much less than one in 
most of the domain, except in the tropics. Fine scale features with large Rossby numbers appear at the boundary 
of the tropics, which suggests that submesoscale processes are marginally resolved there.

The use of a β-plane is primarily for the convenience of Cartesian coordinates and may appear to restrict the 
dynamical regime to be either β-dominated or shear-dominated (depending on the value of β). However, while 
the dimensional value of β is fixed in the β-plane approximation, the dynamical impact of β is measured by the 
Charney-Green number (Charney, 1947; Green, 1960). This number measures the relative importance of PV 
gradients due to β and vertical shear and can be written as

𝛽𝛽
⋆
=

𝛽𝛽𝛽𝛽d

𝜎𝜎E

, (10)

where Ld is the Rossby deformation radius and σE is the Eady growth rate, estimated as

𝜎𝜎E = 𝑓𝑓

√

1

𝐻𝐻 ∫
0

−𝐻𝐻

|�̄�𝒖𝑧𝑧|
2

𝑁𝑁2
𝑑𝑑𝑧𝑧𝑑 (11)
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where 𝐴𝐴 |�̄�𝒖𝑧𝑧| is the magnitude of the mean vertical shear (K. S. Smith, 2007b) and N is the Brunt-Väisällä frequency 
estimated from the mean buoyancy field, where the mean is a 20-year average. Both of Ld and σE vary by more 
than an order of magnitude within the model domain. The resulting Charney-Green number varies from much 
larger than one in the tropics to much less than one at high latitudes (orange line in Figure 2), reflecting β domi-
nance at low latitudes and shear dominance at high latitudes. Thus, while β is fixed, the effective β varies over a 
wide range.

3.2. Diagnosing the Diffusivity Tensor Based on a Tracer-Based Inversion Method

The nine-component diffusivity tensor is diagnosed using the tracer-based inversion method of S. D. Bachman 
et al. (2015), (2020), which is used as the “ground truth” to test against the existing scaling theories. An advantage 
of this method is that it accounts for the anisotropy of eddy diffusion by diagnosing each component of a diffu-
sivity tensor using multiple tracers, rather than simply calculating a scalar diffusivity based on the flux-gradient 

Figure 1. (a) 30-year mean sea surface height (SSH) field in centimeters from the idealized eddy-resolving basin model. The 
contour interval is 5 cm and negative contours are dashed. (b) Snapshot of the instantaneous surface layer vorticity divided 
by the Coriolis frequency, f, (colors) and sea surface height (shading) from the same model. The shading around the edges of 
(a) and (b) are the walls on the boundary. There is a circumpolar channel in the southernmost eighth of the domain. (c) Zonal 
wind stress, τw, (orange line) and surface relaxation temperature, Tsurf, (blue line) as functions of y. The orange dashed line 
gives the zero of τw. Black dashed lines divide the domain into different circulation regimes, marked by the black labels.
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relationship of a single tracer. At least three different tracers are required to uniquely solve for the nine compo-
nents of the diffusivity tensor, but to reduce the noise and bias due to the choice of tracers we use more than three 
tracers to overdetermine the diffusivity tensor and solve for the diffusivity using a least squares method (S. D. 
Bachman et al., 2015, 2020).

A total of 27 passive tracers, Cα, are advected with the velocity field of the model according to

D𝐶𝐶𝛼𝛼

D𝑡𝑡
= 𝜆𝜆𝛼𝛼

(

𝐶𝐶
0

𝛼𝛼 − 𝐶𝐶𝛼𝛼

)

, (12)

where λα is the relaxation rate and 𝐴𝐴 𝐴𝐴0
𝛼𝛼 is the initial condition of α th tracer. The 27 tracers are divided into 3 sets; 

each set is relaxed to the initial conditions with relaxation time scales of 1 year for tracers 1–9, 3 years for tracers 
10–18, and 9 years for tracers 19–27. Tracers in each set are initialized with 9 different conditions,

�0
1,10,19 =

�
��

, �0
2,11,20 = sin

��
��

, �0
3,12,21 = cos

��
��

,

�0
4,13,22 = sin2��

�
, �0

5,14,23 = cos2��
�

, �0
6,15,24 = sin2 ��

�
,

�0
7,16,25 =

� − 2�
�

, �0
8,17,26 = cos��

�
, �0

9,18,27 = sin2��
�

,

 (13)

These tracer distributions are chosen because they are simple and linearly independent; they are similar to those 
chosen by S. D. Bachman et al. (2020). The diagnosed diffusivity is not sensitive to the details of the tracer initial 
conditions provided sufficient tracers are used. The linear independence of tracers is maintained by the relaxation 
in Equation 12. Different relaxation rates will cause the tracers that have the same initial distributions to misalign 
relative to each other during the simulation, so that tracers with identical initial conditions but different relaxation 
rates will, in general, have linearly independent equilibrium distributions.

Tracer concentrations and fluxes equilibrate after approximately 10 years and are then time-averaged online over 
20 years. The time-averaged quantities are then coarsened onto a 152 km horizontal grid by spatial averaging and 
gradients calculated on the coarsened grid. The coarsening scale is chosen because it is coarse enough to separate 
the mesoscale from the large scale poleward of the tropics but still fine enough to capture spatial variability. The 
specific value of 152 km is an even number of uncoarsened grid cells (28) and exactly divides the domain into 
64 × 16 coarsened grid cells in the meridional and zonal directions, respectively. Coarsening scales of 76 and 

Figure 2. Zonal average of the Rossby deformation radius (blue solid line) and the Charney-Green number, β*, (orange solid 
line) as a function of y. Black and cyan dashed lines indicate one and two times the model's horizontal grid spacing. Blue, 
orange, green and red shadings indicate the locations where we analyze the vertical profiles of diffusivities in Figure 5.
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304 km were also tested and gave similar magnitudes, spatial variations, and probability distributions of diffu-
sivities as the 152 km case.

The 3D eddy diffusivity tensor, 𝐴𝐴 ❑ , is diagnosed by inverting the flux-gradient relationship

❑ = −𝒖𝒖′
𝑪𝑪

′
[

∇�̄�𝑪
]†

, (14)

where C is a row vector of the 27 tracers, 𝐴𝐴 (⋅) is a 20-year and 152-km spatial average, 𝐴𝐴 (⋅)
′ is the deviation there-

from, and 𝐴𝐴 (⋅)
† denotes the Moore-Penrose pseudoinverse (Moore, 1920; Penrose, 1955). The pseudoinversion 

solves for 𝐴𝐴 ❑ in a least squares sense while automatically removing linearly dependent combinations of tracers. 
Using a large number of tracers guards against rank-deficiency when tracer distributions “accidentally” align and 
significantly reduces the dependence of the diffusivity on the choice of a particular set of tracers (S. D. Bachman 
et al., 2015). We show in Appendix B that the diagnosed diffusivity is able to accurately reconstruct local eddy 
tracer fluxes, including those tracers that are not used to determine the diffusivity. This means that, unlike the 
methods of Kamenkovich et al. (2021) and Sun et al. (2021), pseudoinversion produces a diffusivity tensor that 
is generic; that is, it is not strongly dependant on the tracers used to diagnose it.

4. Structure of the Symmetric Diffusivity Tensor
4.1. Anisotropy and Orientation of the Mixing

The horizontal distribution of the three eigenvalues of the symmetric diffusivity tensor, 𝐴𝐴 ❙ , at 138 m depth is 
shown in Figure 3. The first two eigenvalues, κ1 and κ2, are nearly horizontal and much larger than the third 
eigenvalue, κ3, which is almost vertical. Figure 4a shows the histogram for the angles between the direction 
of each eigenvector and the buoyancy gradient normalized by the angle between the buoyancy gradient and 
the vertical direction. This normalization is necessary because isopycnal slopes are themselves small, so small 

Figure 3. Eigenvalues for the symmetric part of the diffusivity tensor at 138 m depth as an example. Black lines indicate the 
horizontal direction of the corresponding eigenvectors. The last eigenvalue κ3 is almost vertical, so the horizontal components 
of its eigenvector are small. Blue lines are the mean flow streamlines. Black boxes labeled by numbers are the regions where 
the vertical structures of the diffusivities are analyzed.
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absolute angles do not necessary imply that the mixing directions are aligned 
with isopycnals (but small normalized angles do). The eigenvectors and their 
angles with the buoyancy gradient are shown in the schematic in Figure 4c. 
The directions of κ1 and κ2 are nearly along the isopycnals (i.e., are epipyc-
nal) at a majority of grid points, while the direction of κ3 is predominantly 
diapycnal. Values in the tail of the distribution are primarily from the deep 
tropics and regions of active convection. These places are weakly stratified 
and isopycnal slopes are difficult to determine numerically.

Epipycnal diffusion by mesoscale eddies, represented by κ1 and κ2, plays 
an important role in tracer transport along isopycnals, which have been 
widely investigated in oceanic observations (e.g., Stammer, 1998; Zhurbas & 
Oh, 2003, 2004; J.; Marshall et al., 2006; R. P.; Abernathey & Marshall, 2013; 
Cole et al., 2015; Groeskamp et al., 2017; Roach et al., 2018) and is also the 
focus of this study. Diapycnal mixing, although important, is more likely to 
be induced by submesoscale, fine-scale, or microscale processes which are 
not resolved in this model. The diapycnal diffusivity, κ3, is therefore not the 
focus in this study since it excludes these important contributions.

The magnitude of κ1 is 2–3 times larger than κ2 on average (Figure 4b), indi-
cating that the isopycnal mixing is anisotropic. Hereafter κ1 and κ2 will be 
denoted as the major and minor isopycnal diffusivities, respectively. The 
horizontal direction of the major diffusivity, κ1, is primarily aligned with the 
mean flow, with an exception in the subtropical gyres, while the direction 
of the minor diffusivity κ2 is primarily across the mean flow, orthogonal to 
the major diffusivity (Figure 3; see also Figure 6). Both the major and minor 
diffusivities are occasionally negative—this primarily occurs in the equato-
rial current regions, western boundary current and its extensions, and the 
northwest corner of the circumpolar current (Figure 3). In these regions the 
advection of tracer variance by mean flow is significant, which can allow 
upgradient eddy tracer fluxes. This can be understood by considering the 
tracer variance budget,

𝜕𝜕

𝜕𝜕𝜕𝜕

𝐶𝐶 ′2

2
+ ∇ ⋅

(

𝒖𝒖
𝐶𝐶 ′2

2

)

+ 𝒖𝒖
′𝐶𝐶 ′

⋅ ∇�̄�𝐶 = 𝐶𝐶 ′′ + 𝐶𝐶 ′ ′, (15)

where 𝐴𝐴 𝐶𝐶 ′2∕2 is the tracer variance, 𝐴𝐴  represents dissipation, and 𝐴𝐴  repre-
sent sources (i.e., relaxation). Assuming a statistically steady state with 
weak relaxation and invoking the flux-gradient parameterization of the eddy 
fluxes, the tracer variance budget becomes

∇ ⋅

(

𝒖𝒖
𝐶𝐶 ′2

2

)

− ∇�̄�𝐶 ⋅ ❙ ⋅ ∇�̄�𝐶 ≈ 𝐶𝐶 ′′ < 0, (16)

where the less-than sign emphasizes that dissipation is a sink of tracer variance. The sign of the diagradient flux 
term, 𝐴𝐴 ∇�̄�𝐶 ⋅ ❙ ⋅ ∇�̄�𝐶 , depends on the signs of the eigenvalues of 𝐴𝐴 ❙ (i.e., the diffusivities). This term is positive- 
(negative-) definite if all the diffusivities are positive (negative); otherwise it is sign-indefinite. If advection of 
tracer variance [first term on the LHS of Equation 16] is negligible or divergent, the cross-gradient term—and 
thus the diffusivities—must be positive to balance dissipation. On the other hand, significantly convergent vari-
ance advection can overwhelm dissipation and negative diffusivities are required to balance the sum of advection 
and dissipation.

Note that S. D. Bachman et al. (2020) also find negative diffusivities in energetic regions unless they constrain 
their inversion to only produce positive diffusivities. There is no physical reason to insist that eddy diffusivities 
be positive and constraining them to be so degrades the ability of the diffusivities to reconstruct the modeled 

Figure 4. (a) Probability distribution function of the angles, α1,2,3, between the 
three eigenvectors, φ1,2,3, and the mean buoyancy gradient, 𝐴𝐴 ∇�̄�𝑏 , normalized by 
the angle, α0, between the mean buoyancy gradient and the vertical direction, 

𝐴𝐴 �̂�𝒛 , with (α1,2 − 90°)/α0 in blue and orange, respectively, and α3/α0 in green. 
Small values of (α1,2 − 90°)/α0 indicate that the eigenvectors are nearly 
perpendicular to the mean buoyancy gradient. (b) Probability distribution 
function of the ratio of the major to the minor diffusivities. (c) Schematic for 
the angles between three eigenvectors and the mean buoyancy gradient. The 
blue curved surface indicates an mean isopycnal surface and the solid black 
line indicates the mean buoyancy gradient. The angle, α0, between the mean 
buoyancy gradient and the vertical direction (solid green arrow) is indicated 
in red. The dashed black lines indicate the directions of the three eigenvectors, 
φ1,2,3, with the angles between these and the buoyancy gradient, α1,2,3, 
indicated in red. Note that the mixing directions are ±φi since eigenvectors are 
sign invariant; reversing the direction of φi does not change the angle αi.
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tracer fluxes, so we have avoided implementing such a constraint. On the other hand, we avoid considering the 
negative diffusivities in detail due to a relative lack of theoretical results for negative diffusivities on which base 
our analysis. Examination of the negative diffusivities will be pursued in the future work.

4.2. Vertical Structure

The vertical structure of the isopycnal diffusivity is less well understood than the horizontal structure due to the 
sparsity of full-depth observations (Groeskamp et al., 2020). This study seeks to relate the vertical structure of the 
diffusivity to the dynamical properties in four typical regions with different dynamics: the circumpolar current, 
subtropical gyre, western boundary current, and transition between subtropical and subpolar gyres (shown by the 
black boxes labeled 1, 2, 3, and 4, respectively, in Figure 3). The vertical profiles of the first two eigenvalues are 
analyzed in 600 × 600 km boxes (black boxes in Figure 3) in the four regions.

The vertical structures of the magnitude of κ1 and κ2 in these four regions are shown in Figure 5. The vertical 
structures of diffusivities are similar within each region, except in the western boundary current where the local 
variation is large. The horizontal distribution of diffusivities in the western boundary current extension is compli-
cated by the stability of the jets, wave radiation and formation of recirculations, which can lead to both positive 
and negative diffusivities (Chen & Waterman, 2017; Waterman & Jayne, 2011). For example, the eddy diffu-
sivity is positive in the upstream part of the extensions (which stabilizes the jet) and becomes negative further 
downstream, driving the flanking recirculations (Waterman & Jayne, 2011). A detailed study on the mean flow 
dynamics and tracer variance budget in this region is, however, out of the scope of the current work.

Figure 5. Vertical profiles of the isopycnal diffusivity in the four regions indicated by the black boxes in Figure 3. The four 
regions labeled 1, 2, 3, and 4 in Figure 3 are located in the (a) circumpolar current, (b) subtropical gyre, (c) western boundary 
current, and (d) transition between the subtropical and subpolar gyres, respectively. Blue and orange lines give the vertical 
profiles of the major diffusivity, κ1, and minor diffusivity, κ2, respectively, at all grid points in the four regions. The thick lines 
highlight the profiles at the geographic center of the four regions; these profiles are used to illustrate predictions for their 
vertical structure shown in Figures 8 and 11.
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The magnitude of κ1 is generally several times larger than κ2, especially near the surface (Figure 5), indicating 
strong anisotropy there. The major diffusivity, κ1, decreases monotonically with depth, except in some levels near 
the surface, while the minor diffusivity, κ2, tends to have a subsurface maximum, which can reach to 1,000 m in 
the circumpolar current and is shallower than 500 m depth in the other three regions. The cross-stream diffusivity 
in the Southern Ocean has also been observed to have a subsurface maximum (K. S. Smith & Marshall, 2009; R. 
Abernathey et al., 2010), which is explained to be due to the suppression of mixing by the mean flow (Chapman 
& Sallée, 2017; Ferrari & Nikurashin, 2010; Klocker et al., 2012; Wolfram & Ringler, 2017). Since the direc-
tion of the minor diffusivity, κ2, is mostly across the mean flow as well, we expect the vertical structure of κ2 is 
affected by the mean flow suppression, which will be tested in the following section. The major diffusivity, κ1, on 
the other hand, is mostly along the mean flow direction, which has been shown to be less impacted by the mean 
flow suppression than the cross-stream diffusivity (Chen et al., 2014; Griesel et al., 2014; Riha & Eden, 2011).

Figure 6 shows the vertical structure of the orientation of φ1 and φ2 in the four regions. The direction of φ1 (φ2) 
is generally along the zonal (meridional) direction in the upper levels of the four regions, and it is almost along 
(across) the direction of the mean flow above 1,000 m in the four regions. The surface meridional mean flow is 
dominated by the Ekman flow, which is confined in the first vertical grid cell in this model (Figure 7). Rypina 
et al. (2012) found that the Ekman flow can reduce the anisotropy of mixing by reducing the eddy spreading along 
mean flow, but this impact is secondary compared with the mixing by the surface geostrophic flow. We expect 
this impact of the Ekman flow should—like the flow itself—be confined in the first layer in this model. In the 
deep levels φ1 is less aligned with the mean flow, perhaps because the mean flow is weak at depth (Figure 7) 
and the interior PV gradient plays a more important role in the mixing direction (S. D. Bachman et al., 2020). 
In the subtropical gyre the direction of mean flow is not well-defined, because of the strong veering of the mean 
flow with depth (Figure 7). In the circumpolar current the mixing directions veer from the mean flow direction 
at around 1,000 m where magnitude of the major and minor diffusivities are similar. That means the mixing is 

Figure 6. As in Figure 5, but for the angles of the eigenvectors φ1 (blue line), φ2 (orange line) and the mean flow (green 
solid line) in degrees relative to the zonal direction. The direction opposite the mean flow (green dashed line) is also 
compared with the principal mixing directions since the eigenvectors are invariant under 180° rotations. The black dashed 
line indicates the meridional direction.
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nearly isotropic at those depths and the mixing directions become arbitrary. This is likely because the mean flow 
becomes weak at depth and no longer acts to suppress the cross-stream diffusivity.

5. What Determines the Vertical Structure of the Diffusivities?
The diffusivities, κ1 and κ2, determine tracer mixing along isopycnals, which has important impacts on the mean 
flow (Fox-Kemper et al., 2013; Bates et al., 2014; Chapman & Sallée, 2017; S. D. Bachman et al., 2020). Under-
standing the physical mechanism that gives rise to the anisotropy and vertical structure of these diffusivities can 
guide their parameterization in coarse-resolution models. Here we test the vertical structure of κ1 and κ2 against 
the existing theories. Specific interest is attached to the source of the anisotropy of the isopycnal mixing and the 
applicability of MLT and SMLT to the full-depth diffusivities.

5.1. Source of the Anisotropy

The major diffusivity, κ1, is generally along the mean flow and is several times larger than the minor diffusivity, 
κ2. What is the source of this anisotropy? Extant theories often suppose that along-stream mixing is dominated by 
shear-dispersion (Taylor, 1953; Young et al., 1982; K. S. Smith, 2005, 2007a), which leads to the shear-dispersion 
diffusivity

𝜅𝜅SD ∼
𝑈𝑈 2𝑙𝑙2𝑠𝑠

𝜅𝜅⟂

, (17)

Figure 7. Vertical structure of the zonal (blue line) and meridional (orange line) mean flow velocity averaged over 20 years 
and horizontally averaged over the same four regions as in Figure 5. Note that a portion of the abscissa, from −0.041 and 
−0.074 to −0.02 m/s, are cut out in (c) and (d), respectively, to keep small variations of mean flow visible. The surface 
meridional velocity is large because the surface meridional flow is dominated by Ekman flow and the Ekman layer is 
confined in the first vertical grid cell in this model.
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where U is a scale for the mean flow, ls is the scale of the mean flow shear, and κ⊥ is the cross-stream diffusivity. 
However, attempts to use Equation 17 to scale κ1 did not show good agreement (not shown), which suggests that 
shear dispersion is not playing a strong role in determining κ1.

Another possible source of anisotropy is the suppression of cross-stream mixing by the mean flow, which 
is explained by SMLT and SLT (e.g., K. S. Smith & Marshall,  2009; Ferrari & Nikurashin,  2010; Klocker 
et al., 2012). Both SMLT and SLT construct the cross-stream diffusivity as a background eddy diffusivity times 
a suppression factor, Fs, defined as

F𝑠𝑠(𝑧𝑧) =
1

1 +
𝜏𝜏2

𝐿𝐿2
[𝑐𝑐𝑤𝑤 − �̄�𝑢(𝑧𝑧)]

2

, (18)

which estimates the suppression of diffusivity due to the propagation of nonlinear eddies relative to the mean 
flow, where L, τ, cw and 𝐴𝐴 𝐴𝐴𝐴 are as in Equation 7. Here 𝐴𝐴 𝐴𝐴𝐴 is obtained from the model (𝐴𝐴 𝐴𝐴𝐴 is simply taken as the zonal 
mean flow because we find that the suppression factor containing the zonal mean flow dominates over that 
containing the meridional mean flow since the zonal eddy phase speed is much stronger than the meridional 
speed), and cw is estimated following Klocker and Marshall (2014):

𝑐𝑐𝑤𝑤 = �̄�𝑢
𝑧𝑧
− 𝛽𝛽𝛽𝛽

2

d
, (19)

where 𝐴𝐴 𝐴𝐴𝐴𝑧𝑧 is the depth-averaged zonal mean flow.

The diagnosed cross-stream diffusivity, κ2, is compared with the suppressed along-stream diffusivity, κ1Fs. The 
fit of κ1Fs to the profiles of κ2 at the center of the four regions is shown by the orange solid line in Figure 8, 
where the τ/L in Equation 18 is treated as a single depth-independent parameter following Bates et al. (2014) and 
obtained by least squares fitting, which minimizes the vertical integral of the squared difference between κ1Fs and 
κ2 in each profile. The minimization algorithm we use is the Trust Region Reflective algorithm, implemented by 
the Optimize function in SciPy version 1.7.3. The bounds for the fitting parameters are set to be between 0 and 
infinity. The suppressed major diffusivity, κ1Fs, captures the vertical maximum and variation of κ2 well in these 
regions, except in the western boundary current where negative values of diffusivity spoil the scaling.

The goodness of fit for the scaling theory is quantified by the fraction of variance unexplained (FVU),

FVU =
∫ 0

−𝐻𝐻
(𝜅𝜅obs − 𝜅𝜅fit)

2
𝑑𝑑𝑑𝑑

∫ 0

−𝐻𝐻

(

𝜅𝜅obs − �̄�𝜅𝑑𝑑

obs

)2

𝑑𝑑𝑑𝑑

, (20)

where κobs is the diagnosed diffusivity, 𝐴𝐴 𝐴𝐴𝑧𝑧

obs
 is the vertical average of κobs, and κfit is the prediction by the scaling 

theory. A smaller FVU indicates a better fit. If FVU is larger than one, that means κfit explains less of the vertical 
variation of κobs than the mean of κobs.

Figure 9a shows the distribution of the FVU evaluated for the vertical profile of κ2 at each coarsened grid cell. The 
formula κ1Fs provides a good model for κ2 in most of the extra-tropics except near the boundaries. This suggests 
that the along- and cross-stream diffusivities satisfy the same scalings, with the difference due to the suppression 
of cross-stream mixing by the mean flow. The anisotropy of the diagnosed isopycnal diffusion thus appears to be 
primarily due to the mean flow suppression effect.

5.2. Mixing Regime Transition With Depth

Section 5.1 shows that the minor diffusivity, κ2, can be reconstructed from the major diffusivity, κ1, after account-
ing for the mean flow suppression effect. The vertical profile of the mean flow can be diagnosed from hydrogra-
phy or the resolved flow in coarse resolution models, so the remaining unknown is what determines the vertical 
structure of the major diffusivity.

As discussed in Section 2.2, mixing is likely controlled by different dynamics at different depths if there is a 
transition from a nonlinear to a linear regime with depth. The nonlinear and linear regimes can be distinguished 
by whether the nonlinearity parameter r defined by Equation 8 is greater or less than unity, respectively. Figure 10 
shows the vertical variation of r in the four regions. Also shown for reference is the stratification scale depth, h0,
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ℎ0 =
∫ ��2 ��
∫ �2 ��

, (21)

which is a proxy for the base of the thermocline. The scale depth would be equal to the e-folding depth if the 
stratification were exponential. Outside of the circumpolar current, the parameter r decays rapidly above the 
thermocline and then asymptotes to a value less than 1 below thermocline. In the circumpolar current, r > 1 over 
the full depth. This indicates that eddies in the circumpolar current are nonlinear over whole water column, while 
in the other three regions nonlinear dynamics dominates above the thermocline and linear dynamics is more 
significant below it. Parameterizations of full-depth mixing should account for this regime transition to produce 
the correct vertical structure of mixing.

The major diffusivity, κ1, at the center of the four regions is shown in Figure 11. The diffusivity is fit to the Prandtl 
regime (Equation 4) and Taylor regime (Equation 6) over depths where the nonlinearity parameter is larger and 
smaller than unity, respectively. The green and orange solid lines in Figure 11 show the fits for the Prandtl and 
Taylor regimes, respectively. The Prandtl regime closely captures the vertical variation of κ1 over full depth in 
the circumpolar current, while in the three basin regions, the Prandtl regime works well in the upper several 
hundred of meters where the flow is nonlinear but overestimates the diffusivity at depth. The Taylor regime 
captures the vertical structure of κ1 well in the deep ocean in the three basin regions, where the flow is linear. 
Although the deep diffusivity is small, the mixing time scale is comparable to the mean flow advection time 
scale, so  the mixing can still significantly impact deep water masses and circulation on climatological timescales. 
These results show that the mixing regime transitions from the Prandtl regime to the Taylor regime from the 

Figure 8. Scaling of the minor diffusivity, κ2 (blue solid line with dots), at the center of the four regions, shown in Figure 5. 
Orange lines show the fit for the vertical structure of κ2 to the formula of κ1Fs (Fs expressed in Equation 18). Note that 
the negative values of the diffusivity are excluded from the fit. The purple and red dashed lines show the estimate with 
SMLT, 𝐴𝐴 𝐴𝐴rms𝐿𝐿0F

0
𝑠𝑠 , and the suppressed composite scaling, 𝐴𝐴 𝐴𝐴compF

0
𝑠𝑠 , respectively, where the mixing length and time scales 

in the suppression factor 𝐴𝐴 F0
𝑠𝑠 is estimated as the energy containing scale, L0, and a uniform decay time scale, τ0 = 24 days, 

respectively—see Section 5.4.
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upper to deep ocean in the three basin regions, because of the dominance by nonlinear eddies and linear waves in 
the upper and deep ocean, respectively.

To further verify the correspondence between the Prandtl (Taylor) regime and nonlinear (linear) regime, the 
vertical profile of the major diffusivity at each grid point is divided into two segments with r > 1 and r < 1 and 
compared to the Prandtl and Taylor regimes, respectively. Figures 12a and 12b show the misfit ratio, FVU, for the 
fit of κ1 at depths where r > 1 to the Prandtl regime (Equation 4) and the fit at depths where r < 1 to the Taylor 
regime (Equation 6), respectively. In the circumpolar current, r is larger than 1 over almost full depth, while in the 
tropics, r is smaller than 1 over full depth (regions where no coherent eddy is detected are regarded to be linear 
over full depth). The FVU for the fits of both (Equation 4) and (Equation 6) is smaller than 0.5 in most regions, 
meaning that the mixing in nonlinear regime is well-described by the Prandtl regime and the mixing in linear 
regime is well-described by the Taylor regime. The mixing regime transitions from Prandtl to Taylor regimes 
from the upper to deep ocean in the subtropics and midlatitudes where eddies are nonlinear and linear in the upper 
and deep ocean, respectively. In the circumpolar current, where eddies are nonlinear over full depth, the mixing 
is well-described by the Prandtl regime. In the tropics, where eddies are linear over full depth, the Taylor regime 
works well. Large values of FVU are found along the western and southern boundaries, which might be related 
to the eddy decay due to the lateral friction at the boundary.

Figure 9. Fraction of variance unexplained (FVU) (20) for the comparison between the vertical profile of the minor 
diffusivity, κ2, and (a) the fit of the formula of κ1Fs to κ2, (b) 𝐴𝐴 𝐴𝐴rms𝐿𝐿0F

0
𝑠𝑠 , where 𝐴𝐴 F0

𝑠𝑠 is described by (Equation 26), and (c) 𝐴𝐴 𝐴𝐴compF
0
𝑠𝑠 , 

where κcomp is defined in Equation 25. Black boxes are the regions where the vertical structure of the diffusivity is analyzed 
in Figure 8. Note that regions with negative diffusivities covering more than 1,000 m are masked with gray color. Negative 
diffusivities are also excluded from the fit and calculation of FVU.
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Previous studies have found a transition from linear to nonlinear regime from tropics to midlatitude for the surface 
tracer mixing in the ocean, and the mixing in the nonlinear regime in midlatitudes is well-scaled by Prandtl MLT 
(Klocker & Abernathey, 2014; Klocker et al., 2016). This is consistent with our results in Figure 12a. This study 
further finds that such regime transition also happens with depth in the midlatitude ocean, and the mixing in 
linear regime in fact is better characterized by the Taylor regime. The Taylor regime also works for the mixing in 
the tropics shown in Figure 12b, which can complement previous studies to interpret the mixing in global ocean.

5.3. Mixing Length Scale

While the upper-ocean diffusivity is well-modeled by MLT with a depth-independent mixing length, the question 
of what determines this mixing length remains. The mixing length is commonly associated with the scale of the 
energy containing eddies (Ferrari & Nikurashin, 2010; Klocker & Abernathey, 2014; Larichev & Held, 1995; 
Stammer, 1998), though the method to estimate this energy containing scale differs. The most straightforward 
definition of the energy containing scale is simply the peak of the surface EKE spectrum (Larichev & Held, 1995), 
however resolving this peak accurately in wavenumber space requires large spatial windows that are problematic 
in the spatially inhomogeneous flow considered here. A more robust and local estimate of the energy containing 
scale is

𝐿𝐿0 =

√

√

√

√

𝜂𝜂′′2

|∇𝜂𝜂′′|2
, (22)

where η″ is the SSH anomaly from the 20-year mean (Ferrari & Nikurashin, 2010; Thompson & Young, 2006). 
In Figure 13 we compare the fitted mixing length in Figure 11 to L0 in the surface EKE spectrum. The inverse 
of both the fitted mixing length scale and L0 are close to the peak of the energy spectrum in all the four regions, 
consistent with the mixing length corresponding to the energy containing scale. (Note that the energy-containing 

Figure 10. Vertical structure of the nonlinearity parameter, (8), (blue line) in the four regions shown in Figure 5. The orange 
dashed line gives r = 1 and the red dashed line indicates the stratification scale depth, h0.
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scale corresponds to the radius of the energy-containing eddies. A single wavelength constitutes an eddy dipole 
so the radius of each eddy is one-fourth the wavelength, or approximately the inverse of the energy-containing 
wavenumber.) The horizontal distribution of L0 is given in figure C1b in Appendix C. The purple dashed line in 
Figure 11 shows the comparison between urmsL0 and κ1. The scaling with L0 matches the diffusivity in most of the 
regions, except that it slightly overestimates the mixing length in the western boundary current region.

5.4. A Composite Profile for the Full-Depth Diffusivity

We have shown that κ1 follows a mixing length scaling (the Prandtl regime) when eddies are nonlinear (r > 1) 
and a mixing time scaling (the Tayor regime) when the eddies are linear (r < 1). These two regimes coexist in 
most regions, with the Prandtl regime holding in the upper ocean and the Taylor regime holding at depth. Here 
we propose a composite vertical profile that can smoothly transition from the Prandtl regime to the Taylor regime.

In the original form of SMLT (Ferrari & Nikurashin, 2010), the unsuppressed diffusivity, κu, is

𝜅𝜅𝑢𝑢(𝑧𝑧) = 𝛾𝛾
−1
(𝑧𝑧)EKE(𝑧𝑧), (23)

where γ is a decorrelation rate. Ferrari and Nikurashin  (2010) estimate γ as the eddy turnover rate, urms/L0, 
where L0 is the energy-containing scale (Equation 22). With this definition, (Equation 23) is equivalent to the 

Figure 11. Scaling of the major diffusivity, κ1 (blue solid line with dots), at the same locations as in Figure 8. The depth 
where the nonlinearity parameter r = 1 is indicated by black dashed lines in panels (b–d). Green lines show fits to the Prandtl 
regime (Equation 4) and orange lines show fits to the Taylor regime (Equation 6). The Prandtl and Taylor regime fits are 
only performed for depths where r > 1 and r < 1, respectively, but the profiles are shown over the full depth. Taylor regime 
predictions (orange) significantly overestimate the diffusivity in the upper ocean and would extend far to the right of panels 
(b–d) if shown. Note that no Taylor regime fit is performed for panel (a). Purple dashed lines show Prandtl regime profiles 
with the mixing length estimated as the energy containing scale, L0, instead of by fitting. Red dashed lines show composite 
profiles (Equation 25), with the mixing length as the energy containing scale, L0, and mixing time scale as a uniform constant, 
τ0 = 24 days—see Section 5.4.
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MLT diffusivity (Equation 4). MLT assumes that the mixing is controlled by nonlinear eddy-eddy interactions; 
however, this is not the case in the deep ocean in the basin, where linear wave dynamics is more important.

To account for both the nonlinear and linear regimes, we assume that γ has contributions from both the eddy 
turnover rate, urms/L0, and a depth-independent decay rate, 𝐴𝐴 𝐴𝐴−1

0
 , so

𝛾𝛾(𝑧𝑧) =
𝑢𝑢rms(𝑧𝑧)

𝐿𝐿0

+
1

𝜏𝜏0
. (24)

The eddy turnover rate, urms/L0, varies with depth and represents the contribution from nonlinear interactions 
(Ferrari & Nikurashin, 2010; Kong & Jansen, 2017). The decay time scale, τ0, is depth-independent and asso-
ciated with a superposition of linear waves. This form of γ in Equation 24 is similar to that used by Klocker 
et al. (2012), who point out that the decorrelation time scale is set by the turnover time of turbulent eddies in 
upper ocean and by the time scale of linear waves in deep ocean. Adopting (Equation 24) in Equation 23, we 
obtain the composite formula

𝜅𝜅comp(𝑧𝑧) =
𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟(𝑧𝑧)𝐿𝐿0

1 + 𝐿𝐿0∕ [𝑢𝑢rms(𝑧𝑧)𝜏𝜏0]
. (25)

The advantage of Equation 25 is that it smoothly transitions between the Prandtl and Taylor regimes. If urms/L0 
dominates over 𝐴𝐴 𝐴𝐴−1

0
 , (Equation 25) reduces to the Prandtl regime expression, while if 𝐴𝐴 𝐴𝐴−1

0
 dominates, (Equation 25) 

reduces to the Taylor regime expression. Since urms decays rapidly with depth, the mixing regime described by 

Figure 12. Fraction of variance unexplained (FVU) (20) for the comparison between the vertical profile of the major 
diffusivity, κ1, and prediction by theories at each horizontal location. (a), (b) FVU for profiles of κ1 at depths where r > 1 
and r < 1 compared to their fits to (a) the Prandtl regime (Equation 4) and (b) Taylor regime (Equation 6), respectively. Note 
that the regions where there are fewer than 4 levels for fitting are masked with gray color. (c), (d) FVU for the entire vertical 
profile of κ1 compared to (c) urmsL0, where L0 is the local energy-containing scale given by Equation 22, and (d) the composite 
scaling, given by Equation 25. Black boxes are the regions where the vertical structures of the diffusivities are analyzed in 
Figure 11. Note that negative diffusivities are excluded from the fitting and calculation of FVU.
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Equation 25 transitions from the Prandtl regime to the Taylor regime naturally with depth. An alternative way 
to achieve the regime transition is to use the nonlinearity parameter, r, in Equation 25 since the variation of r 
indicates the transition between nonlinear and linear regimes. However, we avoid the use of r since it is difficult 
to estimate in practice from the resolved fields of coarse-resolution models.

In Ferrari and Nikurashin (2010)'s derivation, the inverse of the decorrelation rate, 1/γ, is equal to the time scale, 
τ, in the suppression factor (18). However, if 𝐴𝐴 𝐴𝐴 = (𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟∕𝐿𝐿0 + 1∕𝐴𝐴0)

−1 is used in Equation 18, the relation κ2 ≈ κ1Fs 
no longer holds (not shown)—it is therefore better to treat τ as a depth-independent time scale (i.e., τ = τ0). This 
mismatch between τ and 1/γ is was also noted by Klocker and Abernathey (2014), who attributed it to a shortcom-
ing of the stochastic models of Ferrari and Nikurashin (2010) and Klocker et al. (2012). The fits of κ2 to κ1Fs in the 
circumpolar current, subtropical gyre and transition regions (c.f. Section 5.1 and Figure 8) give τ0 as 22 days, 24 and 
29 days, respectively, assuming the length scale, L, in Equation 18 is given by the local energy-containing scale, L0. 
The fit in the western boundary current is not reliable because κ2 contains many negative values there. The time scales 
from the fits are close to the spin-down time scale due to the model's linear bottom drag, 25 days, which suggests τ0 
is related to frictional processes. We have no quantitative explanation for the spatial variation of τ0, so for simplicity 
we choose it to be a uniform constant. Following Groeskamp et al. (2020), we estimate it by doing an overall fit using 
diffusivity profiles from all three regions and find τ0 ≈ 24 days—which is again close to the frictional spin-down time.

The composite profile, κcomp, with τ0 = 24 days is compared to the vertical structure of the major diffusivity, κ1, 
in Figure 11 (red dashed line). The composite profile captures the variation of full-depth diffusivity better than 
MLT (purple dashed line) in the four regions. The composite profile slightly underestimates the diffusivity in the 
upper ocean in the subtropical gyre and transition regions compared with MLT, but its overall comparison with κ1 

Figure 13. Surface geostrophic kinetic energy spectrum (blue solid line with dots) calculated from the instantaneous SSH 
fields over the four regions in Figure 5 and averaged over 20 years. The EKE spectrum is estimated as 𝐴𝐴 𝐴𝐴2

|�̂�𝜂|2𝑘𝑘2
∕𝑓𝑓 2 , where 𝐴𝐴 𝐴𝐴𝐴 

is the Fourier transform of SSH, f is the spatial mean Coriolis parameter in each region (values given in the figure). The 2D 
spectrum is computed with tapering via a Tukey window, and then azimuthally integrated to obtain the 1D spectrum. The 
green dashed line indicates the inverse of the energy containing scale, L0, estimated from Equation 22 at the center of the four 
regions, and red dashed line is the inverse of the fitted mixing length from Figure 11.
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is better than MLT. The relative performance of the composite profile and MLT are assessed using the FVU (20) 
and shown in Figures 12c & 12d. The composite profile prediction of κ1 performs better than MLT, especially in 
the subtropical gyres. The success of the composite profile verifies our assumption that both the nonlinear eddy-
eddy interaction and decay of linear waves contribute to the mixing. The composite profile does not work well in 
the eastern tropics or the boundary between tropics and subtropics. The fits show that the mixing time scale, τ0, is 
smaller than 24 days in those regions, which suggests that a better physical estimate for τ0 is necessary to further 
capture the variation of diffusivity in the tropics.

The cross-stream diffusivity, κ2, is also estimated by multiplying κcomp by the suppression factor 𝐴𝐴 F0
𝑠𝑠 ,

F
0

𝑠𝑠(𝑧𝑧) =
1

1 +
𝜏𝜏2
0

𝐿𝐿2

0

[𝑐𝑐𝑤𝑤 − �̄�𝑢(𝑧𝑧)]
2

,
 (26)

where cw and 𝐴𝐴 𝐴𝐴𝐴 are taken the same as those in Section 5.1. The estimate of 𝐴𝐴 𝐴𝐴compF
0
𝑠𝑠 is shown by the red dashed line 

in Figure 8. The estimate with SMLT (i.e., 𝐴𝐴 𝐴𝐴rms𝐿𝐿0F
0
𝑠𝑠 ) is also shown in Figure 8 (purple dashed line) for compari-

son. SMLT only captures the vertical structure of κ2 well in the circumpolar current region, while the suppressed 
composite profile, 𝐴𝐴 𝐴𝐴compF

0
𝑠𝑠 , works well in both the circumpolar current and the gyres. The poor estimate in the 

western boundary current might be due to the presence of negative values for the minor diffusivity (Figure 3), 
which could potentially lead to large uncertainties in the profile. The FVU for the comparisons between the 
vertical profile of κ2 and the predictions by SMLT and 𝐴𝐴 𝐴𝐴compF

0
𝑠𝑠 are given in Figure 9b and 9c, respectively. The 

composite profile improves the prediction of κ2 compared with the SMLT in the subtropical and subpolar regions. 
The suppressed composite profile, 𝐴𝐴 𝐴𝐴compF

0
𝑠𝑠 , is applicable to broader ocean regimes than SMLT, which makes it a 

promising estimate for the cross-stream diffusivity from ocean observations.

The FVU for both the suppressed composite profile and SMLT are large in many regions in the circumpolar 
current. The error is mostly due to the underestimates of the diffusivity in the deep circumpolar current, where 
κ2 decreases with depth more slowly than the predictions as shown in Figure 8a, but its qualitative features are 
still captured. The mixing tends to become isotropic in the deep circumpolar current as shown in Figure 5a and 
Figure 6a, and the mean flow suppression appears to be weaker than the prediction by Equation 26. Wolfram 
and Ringler (2017) also found that the cross-stream diffusivity decreases with depth slower than the prediction 
by SMLT in the deep ocean. They argued that this issue might be fixed by making L0 and τ0 in Equation 26 vary 
with depth, but the estimation of the vertical structure of L0 and τ0 requires additional physical understanding.

6. Conclusions
This study investigates the vertical structure of the isopycnal tracer diffusivity in an idealized basin configuration 
of the MITgcm, which contains multiple gyres, boundary currents, and a zonally reentrant channel flow analo-
gous to the Antarctic Circumpolar Current. Multiple tracers are advected to solve for the 3D diffusivity tensor 
based on the tracer-inversion method of S. D. Bachman et al. (2015). As shown in Appendix B, the reconstruc-
tion of eddy tracer fluxes from the diffusivity tensor is excellent, even for active tracers not used to diagnose 
the diffusivity tensor. The diffusivity tensor is additionally insensitive to the details of the tracers used in the 
pseudoinversion as long as a sufficient number of linearly independent tracers are used. These results indicate 
that the diffusivity tensor so diagnosed is generic and capable of representing the eddy flux of an arbitrary tracer.

Recent studies reporting that the diffusivity tensor is highly sensitive to the tracers used to estimate it (e.g., Haigh 
et al., 2021; Kamenkovich et al., 2021; Sun et al., 2021) have used the minimum number of tracers required to 
determine the diffusivity tensor (e.g., two tracers for a 2 × 2 tensor). Such inversion methods rely on the assump-
tion that arbitrary pairs (or triplets for a 3 × 3 tensor) of tracers will remain linearly independent at all spatial points 
in the simulation domain. This is unlikely to be true in practice, which can make the resulting inversion extremely 
ill-conditioned. In contrast, using many tracers allows the pseudoinversion process to automatically remove line-
arly dependent tracer combinations so that the inversion remains well-conditioned and robust. Note that these 
statements apply to the representation of the time mean eddy flux on coarsened grids—the instantaneous tracer 
flux on the original grid may not be represented in detail. Further, since the diagnosed diffusivities are effectively 
time-invariant, using them to represent the fluxes of active tracers will lead to an eventual accumulation of errors 
due to the lack of feedback between the diffusivities and the fluxes. We therefore acknowledge the possibility that 
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the diffusivity tensor necessary to represent instantaneous fluxes of (possibly active) tracers may indeed depend 
on the tracers in question and suggest that the diffusivities obtained from pseudoinversion are more suited for 
diagnostic rather than prognostic studies.

The first two eigenvectors of the symmetrized diffusivity tensor are approximately aligned with buoyancy surfaces, 
so the associated eigenvalues represent isopycnal diffusivities. The isopycnal diffusivities are anisotropic, with the 
diffusivity along the mean flow generally several times larger than the diffusivity across the mean flow. The cross-
stream diffusivity tends to have a subsurface maximum and can be reconstructed from the vertical profile of along-
stream diffusivity after accounting for mixing suppression by eddy propagation relative to the mean flow (K. S. 
Smith & Marshall, 2009; Ferrari & Nikurashin, 2010; Klocker et al., 2012). This suggests that the anisotropy of 
mixing is primarily due to the mean flow suppression of the cross-stream diffusivity, rather  than shear dispersion.

The vertical structure of the along-stream diffusivity is well-captured by Prandtl mixing length theory with a 
depth-independent mixing length where the nonlinearity parameter r > 1; this is in the circumpolar current and 
above the thermocline in the basin regions. The mixing length is well-approximated by the energy containing 
scale estimated from the SSH anomaly, which is straightforward to diagnose based on Equation 22 using SSH 
from satellite altimetry. No nondimensional mixing efficiency needs to be specified in this scaling, which is an 
advantage over previous studies (e.g., Groeskamp et al., 2020; Klocker & Abernathey, 2014). The success of 
Prandtl scaling in the upper ocean in this model provides a rationalization for studies which apply mixing length 
theory to infer the vertical structure of diffusivity assuming that the mixing length is depth-independent (Bates 
et al., 2014; Groeskamp et al., 2020).

The nonlinearity parameter r < 1 below the thermocline in the basin, so a depth-independent mixing length does 
not apply. Indeed, using the upper-ocean mixing length can overestimate the deep diffusivity in the gyres by nearly 
an order of magnitude. Although the diffusivity is generally small at depth, excessively large diffusivities may still 
significantly impact deep watermasses and the mean state over long simulations since the mean flow is also very 
weak at depth. The along-stream diffusivity in the linear regime (r < 1) in the deep ocean is well-represented by 
the Taylor regime (i.e., the EKE times a depth-independent mixing time scale). This dependence of mixing regime 
on nonlinearity is consistent with the arguments of Klocker and Abernathey (2014) and Klocker et al. (2016), who 
find that mixing length theory applies to surface mixing in the extratropics where the flow is nonlinear but fails in 
the tropics where the flow is dominated by linear waves. This study shows that a similar transition can also occur 
in the vertical near the base of thermocline in the midlatitudes. Mixing length theory only characterizes the full-
depth diffusivity well in the circumpolar current, where the flow is nonlinear (r > 1) over the full depth.

To account for the transition between nonlinear and linear mixing regimes, we propose a composite scaling profile 
in which the decorrelation rate has contributions from both the eddy turnover rate and a depth-independent decay 
rate. This profile reduces to the Prandtl regime where the eddy turnover rate dominates and to the Taylor regime 
where the decay rate dominates, with a smooth transition between them. The composite profile captures the verti-
cal structure of the along-stream diffusivity better than either the Prandtl or Taylor regime alone. The cross-stream 
diffusivity is also well-characterized by the composite profile multiplied by a suppression factor, (Equation 26), 
which accounts for the suppression of mixing by the mean flow (Ferrari & Nikurashin, 2010; Klocker et al., 2012). 
The composite profile has the advantage of capturing both the nonlinear and linear regimes and should be useful in 
estimates or parameterizations of the full-depth isopycnal mixing in a broad range of ocean regimes.

The model used in this study does not have bottom topography, which likely impacts the vertical structure of EKE 
and the tracer diffusivities. The presence of bottom topography can reduce the EKE near the bottom and make it 
more surface intensified (de La Lama et al., 2016; LaCasce, 2017). The topographic waves will also likely play 
an important role in the mixing in the deep ocean (Hallberg, 1997; Rhines, 1970). These possible changes might 
make eddies become more nonlinear in the upper ocean due to a greater surface-intensification of EKE and make 
linear dynamics more significant in the deep ocean due to the presence of topographic waves. Topography can 
also change the direction of the mean flow and PV gradient, especially in the circumpolar current region, where 
the mean flow is strong near the bottom. This can change the major and minor directions of isopycnal mixing (S. 
D. Bachman, 2021) and even lead to the breakdown of mixing suppression due to the presence of non-parallel 
jets (Naveira Garabato et al., 2011; Thompson, 2010). Finally, topography can alter the mixing length (Wei & 
Wang, 2021) and eddy phase speed (LaCasce & Groeskamp, 2020; Tailleux & McWilliams, 2001). Application 
of the results of this study to simulations with bottom topography will be pursued in the future work.
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The scaling proposed by this study is not a full closure theory, since it still requires the vertical profile of the 
eddy kinetic energy and the energy containing scale from the SSH anomaly. Tests of the existing closure theories 
for the mixing length (e.g., Visbeck et al., 1997; Eden & Greatbatch, 2008; Thompson & Young, 2006; Jansen 
et al., 2015; Gallet & Ferrari, 2020, 2021) and vertical mode theory of the eddy kinetic energy (e.g., Wunsch, 1997; 
Lapeyre & Klein, 2006; LaCasce & Mahadevan, 2006; K. S.; Smith & Vanneste, 2013; LaCasce, 2017; Groe-
skamp et al., 2020) is beyond of the scope of this study and will be studied in a forthcoming paper. In addition, the 
mean flow suppression theory used in this study is based on a single energy containing wavenumber as in Ferrari 
and Nikurashin (2010). However, studies have suggested that better estimate of the diffusivity can be obtained 
using whole energy spectrum (Chen et al., 2015; Kong & Jansen, 2017). Thus for a full closure, we will also need 
a prediction for the EKE spectrum. A closure theory including all these factors would serve as a solid parameter-
ization of the isopycnal mixing in the ocean component of coarse-resolution climate models.

Appendix A: Identification and Tracking of Coherent Mesoscale Eddies
Coherent mesoscale eddies are identified and tracked using SSH snapshots in three-day intervals from the model, 
using the same algorithm as Chelton et al. (2011). This method is provided as an optional tracking method in the 
eddy tracking package described by Mason et al. (2014). Coherent eddies are identified as the SSH extrema and 
tracked by connecting each eddy to the proximal eddies in successive time frames, where the eddies amplitude 
and radius are required to be 0.4–2.5 times those of the corresponding eddies in the last time frame. Only the 
eddies that last longer than 30 days are considered. The propagation velocity of coherent eddies at time step m is 
estimated as the centered difference from locations of the eddy centroids at the time steps m − 1 and m + 1. See 
Chelton et al. (2011) and Mason et al. (2014) for more detail.

Appendix B: Evaluation of the Reliability and Robustness of the Diffusivity Tensor
To test the effectiveness of pseudoinversion method, the flux of each of the 27 tracers and the heat flux are recon-
structed using the diffusivity tensor, 𝐴𝐴 ❑ . Note that the heat flux is not used in the tracer inversion in Equation 14, so 
it can be used as an independent test for the effectiveness of 𝐴𝐴 ❑ . Following S. D. Bachman et al. (2020) the relative 
error of reconstructed tracer flux is estimated as

𝜖𝜖 =
‖𝒖𝒖

′𝐶𝐶 ′ + ❑∇�̄�𝐶‖

‖𝒖𝒖
′𝐶𝐶 ′

‖

, (B1)

where C is one of the 27 tracers or the temperature and ‖⋅‖ is the vector norm. The relative error of the tracer 
flux reconstruction is estimated at each coarsened grid point and vertical level and the distribution is shown in 
Figure B1. The relative error is generally small at the majority of the grid points, with a median smaller than 0.2, 
so the diffusivity tensor captures most the characteristics of eddy tracer transport. Tracers C9, C18 and C27 have 
the largest relative error, because their initial vertical gradient is close to zero at some levels, which leads to very 
small tracer flux at those levels and make the relative error appear very large. With the exception of these tracers, 
the reconstruction is not very different for tracers with different initial distributions, indicating that the diffusivity 
tensor is generic and capable of representing the eddy flux of an arbitrary tracer.

We tried to use fewer tracers (e.g., only using tracers 1–9) in the inversion, and the relative error is not very differ-
ent from the inversion using all 27 tracers (not shown), which suggests that 9 tracers with distinct initial distribu-
tions are likely sufficient to diagnose the diffusivity tensor. In the rest of the paper we simply used the  diffusivity 
tensor 𝐴𝐴 ❑ diagnosed using all the 27 tracers.

Figure B2 compares the meridional heat flux reconstructed by the diffusivity tensor with the diagnosed heat flux 
at 138 m depth (same depth as Figure 3) and a meridionally oriented vertical section, indicated by the black dashed 
line in Figure B2a and B2b. The reconstructed heat flux looks very similar as the diagnosed heat flux, meaning 
that the diffusivity tensor excellently reconstructs the meridional heat flux of the model. Note that the heat flux 
and temperature gradient are not used in the tracer inversion (14), so heat flux is independent from the calculation 
of the diffusivity tensor. The accurate reconstruction of the meridional heat flux thus supports the  assumption 
behind (14) that the diffusivity tensor is independent of the particular tracers used in the inversion.
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Figure B1. Box and whisker plot of the relative error of the tracer flux reconstruction, calculated by (B1) at all coarsened 
grid points and weighted by volume. The labels on the abscissa indicate the tracer whose flux is reconstructed (the number 
i indicates Ci and T indicates temperature). The orange line gives the median value and the box extends from the first to the 
third quartile of the error distribution. The upper and lower whiskers indicate the 5 and 95 percentiles.

Figure B2. Meridional heat flux (a), (c) diagnosed from the model and (b), (d) reconstructed by the diffusivity tensor. (a) 
and (b) show the horizontal distribution of the heat flux at 138 m depth. (c) and (d) show the vertical distribution of heat flux 
at a meridional section indicated by the black dashed line in (a) and (b).
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Appendix C: Mixing Length and Time Scales
Figure C1a and C1c give the distribution of the mixing length and time scales from the fits in Figure 12a and 12b, 
respectively. The mixing length is typically tens of kilometers and decreases from the subtropics to the high 
latitudes. The ratio of the mixing length to the local Rossby deformation radius increases from around 1 in the 
subtropics (y ∼ 1,000–2,000 km) to around 2.5 in the high latitudes (y ∼ 4,000 km), which is consistent with 
the observationally based results of Klocker and Abernathey (2014). The mixing length is close the the energy 
containing scale, L0, (Figure C1b) in most extra-tropical regions. The fitted mixing time scale is smallest in the 
tropics and varies little in the gyres, where it is close to the spin-down time scale due to the model's linear bottom 
drag, 25 days.

Data Availability Statement
Model configuration, analysis scripts, data files used for this study are available at https://doi.org/10.5281/
zenodo.6466362.
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