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Abstract Mixing along isopycnals plays an important role in the transport and uptake of oceanic tracers.
Isopycnal mixing is commonly quantified by a tracer diffusivity. Previous studies have estimated the tracer
diffusivity using the rate of dispersion of surface drifters, subsurface floats, or numerical particles advected by
satellite‐derived velocity fields. This study shows that the diffusivity can be more efficiently estimated from the
dispersion of coherent mesoscale eddies. Coherent eddies are identified and tracked as the persistent sea surface
height extrema in both a two‐layer quasigeostrophic (QG) model and an idealized primitive equation (PE)
model. The Lagrangian diffusivity is estimated using the tracks of these coherent eddies and compared to the
diagnosed Eulerian diffusivity. It is found that the meridional coherent eddy diffusivity approaches a stable
value within about 20–40 days in both models. In the QG model, the coherent eddy diffusivity is a good
approximation to the upper‐layer tracer diffusivity in a broad range of flow regimes, except for small values of
bottom friction or planetary vorticity gradient, where the motions of same‐sign eddies are correlated over long
distances. In the PE model, the tracer diffusivity has a complicated vertical structure and the coherent eddy
diffusivity is correlated with the tracer diffusivity at the e‐folding depth of the energy‐containing eddies where
the intrinsic speed of the coherent eddies matches the rms eddy velocity. These results suggest that the oceanic
tracer diffusivity at depth can be estimated from the movements of coherent mesoscale eddies, which are
routinely tracked from satellite observations.

Plain Language Summary Ocean mesoscale eddies are swirling currents with size of 10–100 km.
Mesoscale eddies mix heat, carbon, and other tracers along constant density surfaces, which impacts the ocean
environment and global climate. Tracer mixing is commonly represented by an eddy diffusivity, which relates
the eddy tracer mixing to the large‐scale properties in coarse‐resolution ocean models. Estimates of tracer
diffusivity are important for evaluating and improving the representation of mesoscale eddies in models.
Mesoscale eddies commonly take the form of individual swirls that move randomly over long distances and last
for several months. This study finds that the tracer diffusivity can be accurately estimated from the movement of
individual mesoscale eddies in highly idealized numerical simulations. Horizontal mixing is strong when eddies
spread out quickly. In more realistic situations, the rate at which eddies spread is correlated with the tracer
diffusivity at a depth where the eddy movement speed is close to the swirling velocity. This finding can be used
to estimate the oceanic tracer diffusivity using the trajectories of mesoscale eddies from satellite observations.

1. Introduction
Ocean mesoscale eddies play an important role in the transport and mixing of oceanic tracers, such as heat,
carbon, and nutrients. Tracer mixing by mesoscale eddies impacts the large‐scale ocean circulation (Hallberg &
Gnanadesikan, 2006; Marshall & Radko, 2003, 2006; Wolfe & Cessi, 2010) and biogeochemical environment
(Gnanadesikan et al., 2015; McGillicuddy Jr et al., 2003; Steinberg et al., 2019). Mesoscale eddies can contribute
to tracer mixing by both stirring the background tracer distribution and by trapping tracers in their cores and
moving them as the eddies drift (Frenger et al., 2015; W. Zhang et al., 2020). Here we focus on the former
mechanism and refer to transport by stirring when mesoscale tracer transport or mixing is mentioned. Mesoscale
tracer mixing is commonly parameterized using a combination of eddy‐induced advection (Gent & McWil-
liams, 1990) and diffusion of tracers along isopycnals (Redi, 1982) in the coarse‐resolution ocean component of
climate models. Climate simulations are sensitive to the magnitude and distribution of the isopycnal tracer
diffusivity (Pradal & Gnanadesikan, 2014; Sijp et al., 2006), which needs to be constrained by observational
measurements.
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Lagrangian methods have been used to estimate the tracer diffusivity in the ocean using surface drifters (Roach
et al., 2018; Rühs et al., 2018; Rypina et al., 2012; Zhurbas et al., 2014; Zhurbas & Oh, 2003, 2004), subsurface
floats (J. LaCasce et al., 2014; Balwada et al., 2016, 2021), and numerical particles advected by satellite derived
flow fields (Klocker, Ferrari, LaCasce, & Merrifield, 2012; Rypina et al., 2012). According to Taylor (1922), for
homogeneous and stationary turbulent flow, the eddy diffusivity can be estimated by the continuous movements
of single Lagrangian particles,

K(x0,t) =
1
2

d
dt
⟨(x(t) − x0)

2
⟩L, (1)

where xi(t) is the position of a particle found at x0 at time t = 0, 〈⋅〉L indicates the Lagrangian mean, which is the
average over the ensemble of particles, and ⟨(x(t) − x0)

2
⟩L is the absolute dispersion of particles. Modified

versions of Equation 1 have been developed by Davis (1987, 1991) to account for the inhomogeneity and
anisotropy of mixing. Accurate estimates using these methods require averages over large numbers (order of
hundreds) of drifters (Klocker, Ferrari, LaCasce, & Merrifield, 2012), but the spatial distribution of drifters and
floats is generally sparse and many surface drifters are contaminated by wind effects (Lumpkin et al., 2013). Also,
the estimates of diffusivity by these methods generally takes a long time (the order of months) to asymptote to the
“true” value of diffusivity (Klocker, Ferrari, & LaCasce, 2012; Rypina et al., 2012). The long convergence
timescale makes these estimates inefficient and allows errors to accumulate as the sampling error grows with time
(Davis, 1991). Further, particles in inhomogeneous flow might move to a different region with a different mixing
rate during the period of diffusivity calculation.

Mesoscale eddies are increasingly observed and studied as individual coherent structures that can be identified
and tracked from satellite observations (Chelton et al., 2011; Dong et al., 2014; Z. Zhang et al., 2014). Coherent
eddies are swirling structures that can move in the ocean over a potentially long distance (Chelton et al., 2011).
Studies of vortex‐dominated 2D turbulence have used Equation 1 to estimate a diffusivity from the movements of
coherent eddies, with eddy displacements replacing particle displacements (Chong et al., 2020; Hansen
et al., 1998; J. H. LaCasce, 2008b; Weiss et al., 1998). This is based on the observation that the movement of
coherent eddies resembles that of particles (Weiss et al., 1998); that is, the motion is initially ballistic (absolute
dispersion quadratic in time) and then transitions to diffusive (absolute dispersion linear in time). This evolution
of the absolute dispersion is also a typical feature of Brownian motion (Chong et al., 2020). When the motion of
coherent eddies becomes diffusive, a Lagrangian diffusivity can be estimated from their motion using Equation 1.

The movement of coherent ocean eddies has both systematic and chaotic features. Eddies are impacted by the β‐
effect, which causes them to drift systematically westward relative to the mean flow (Cushman‐Roisin
et al., 1990). The β‐effect also leads to meridional “beta drift”: cyclonic eddies tend to propagate poleward and
anticyclonic eddies tend to propagate equatorward (e.g., Holland, 1982; Nycander, 2001; R. B. Smith, 1993;
Sutyrin et al., 1994; Korotaev, 1997). In addition to these systematic drifts, coherent eddies also move randomly
due to eddy‐eddy interactions (Ni et al., 2020; Samelson et al., 2014, 2016). The random movements of coherent
eddies have been used to estimate a diffusivity by Ni et al. (2020). However, they interpreted this diffusivity to
represent the spreading of eddy energy rather than the mixing of tracers.

W. Zhang et al. (2020) recently found that the Lagrangian diffusivity estimated from the dispersion of coherent
eddies using Equation 1 can provide an accurate estimate of the Eulerian PV diffusivity in a two‐layer QG model.
W. Zhang et al. (2020) defined a coherent eddy as a “rotationaly coherent Lagrangian vortex” (RCLV) (Haller
et al., 2016), which can trap particles (water parcels) inside them over a long time. It was found that particles
trapped within coherent eddies have a negligible contribution to the total particle dispersion (consistent with
Abernathey & Haller, 2018), but that the diffusive movement of coherent eddies themselves was representative of
the diffusivity of the flow. If this finding also applies to mesoscale eddies in the ocean, then ocean tracer
diffusivity can also be inferred from the dispersion of coherent mesoscale eddies. To support this application, two
questions need to be addressed. First, the definition of a coherent eddy (i.e., RCLV) used in W. Zhang et al. (2020)
is stricter than the commonly used definition of a coherent eddy, which is an Eulerian feature (e.g., a sea surface
height or vorticity extremum) that can be identified and tracked over a long time (Chelton et al., 2007, 2011;
Mason et al., 2014). Does the dispersion of Eulerian coherent eddies also provide an accurate estimate of tracer
diffusivity? Second, W. Zhang et al. (2020) only qualitatively compared the diffusivity estimated from coherent
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eddies and the Eulerian PV diffusivity in three QG simulations with varying bottom friction. Can the results of W.
Zhang et al. (2020) be generalized to broader QG regimes and more realistic 3D ocean circulations?

In this study, we compare the Lagrangian diffusivity estimated from the movement of coherent eddies to the tracer
diffusivity in a two‐layer QG model and a 3D primitive equation (PE) model. We find the coherent eddy
diffusivity provides an accurate estimate of the upper‐layer meridional tracer diffusivity in the QG model and is
highly correlated with the tracer diffusivity at a depth determined by a nonlinearity parameter in the PE model.
This depth is close to the e‐folding vertical scale of the energy‐containing eddies, which can be estimated from sea
surface height and hydrography. These findings can be further used to infer and interpret the lateral tracer
diffusivity in the ocean based on tracking the coherent mesoscale eddies.

This manuscript is structured as follows. In Section 2, we describe the configuration of the numerical models and
analysis methods. In section3, the coherent eddy diffusivity is shown to accurately reproduce the Eulerian tracer
diffusivity in the QG model except when either bottom friction or beta are small. We discuss the reason for the
discrepancy for small beta and friction simulations in Section 4. The coherent eddy diffusivity is then compared to
the tracer diffusivity in the PE model in Section 5. The conclusions are summarized in Section 6.

2. Approach
In this section, we introduce the key components of our approach: (a) the configuration of the QG and PE models
that are used to examine the coherent eddy diffusivity; (b) the methods used to track coherent eddies and compute
the coherent eddy diffusivity in both models; and (c) the methods to estimate the tracer diffusivity in the two
models. The detailed approaches for estimating the coherent eddy and tracer diffusivities differ in the two models,
due to models' different complexity.

2.1. Models

2.1.1. Two‐Layer QG Model

An idealized two‐layer QG model is used to simulate geostrophic turbulence. The governing equation is the nth
layer perturbation QG PV, qn, equation:

∂qn
∂t
+ Un

∂qn
∂x

+ J (ψn,qn) + βn
∂ψn
∂x

= ssd − δ2nrek∇2ψn, (2)

where subscripts n = 1, 2 represent the upper and lower layers, respectively, ψ is the perturbation streamfunction,
J(⋅, ⋅) is the horizontal Jacobian operator, Un is the background zonal mean flow, ssd is the small‐scale dissipation
implemented by a spectral filter of enstrophy (the same as J. H. LaCasce Jr, 1996, except the exponential damping
factor is 23.6), and rek is the bottom friction damping rate, which is only active on the lower layer (δmn is the
Kronecker delta).

The PV of the nth layer is

qn = ∇2ψn + (− 1)nFn (ψ1 − ψ2), (3)

where

F1 =
k2
d

1 + δ
, F2 = δF1, (4)

kd = 1/Ld, Ld is the Rossby deformation radius, and δ = H1/H2 is the ratio of the thicknesses of the two layers.

The background meridional PV gradient,

βn = β − (− 1)nFn (U1 − U2), (5)
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is due to both the planetary vorticity gradient, β, and the background vertical shear. The background flow is
baroclinically unstable when the sign of βn differs between the two layers.

We use the same parameter setting as L. Wang et al. (2016) and W. Zhang et al. (2020) for the control simulation:
Ld = 15 km, H1 = 800 m, δ = 0.25, U1 = 0.04 m/s, U2 = 0, rek = (20 days)− 1 and β = 1.3 × 10− 11m− 1s− 1. The
nondimensional frictional rate,

r∗ =
rekLd

U1 − U2
, (6)

and nondimensional β,

β∗ =
βL2

d
U1 − U2

, (7)

are varied by an order of magnitude to explore a wide range of flow regimes. We pick three typical simulations
with r* = 0.43, 0.22, and 0.11 for displaying example results in Figures 1 and 3 below.

The model domain is doubly periodic with side length L= 1,200 km. The horizontal grid spacing is 2.3 km, which
resolves the Rossby deformation radius Ld. The imposed background flow (U1, U2) is baroclinically unstable for
all parameters used in this study. Each simulation is initialized randomly to stimulate baroclinic instability, which

Figure 1. Snapshot of the upper‐layer streamfunction anomaly field relative to the background zonal mean flow for a
simulation with r* = 0.22 and β* = 0.073. Blue and red lines indicate the boundaries of cyclonic and anticyclonic eddies,
respectively. Black dots are the centroids of the eddies. Black lines are the tracks of the eddies from the current time to when
they terminate.
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rapidly saturates into forced‐dissipative geostrophic turbulence. The simulations are run for 30 years to forget
their initial conditions and then for another 20 years with daily snapshots for analysis. Details of the model setup
can be found in W. Zhang et al. (2020). The model is implemented using the Python package pyqg version 0.1.3
(Abernathey et al., 2016).

2.1.2. Primitive Equation Model

The PE model is an idealized configuration of the Massachusetts Institute of Technology general circulation
model (MITgcm checkpoint67r; Campin et al., 2020; Marshall, Adcroft, et al., 1997; Marshall, Hill, et al., 1997),
which has been used for several previous studies (Cessi & Wolfe, 2009; Cessi et al., 2010; Wolfe, 2014; Wolfe &
Cessi, 2009, 2010, 2011; Wolfe et al., 2008; W. Zhang & Wolfe, 2022). The circulation simulated by this model is
more complex than the QG model, as it contains multiple gyres, boundary currents, and a zonally reentrant
channel flow analogous to the Antarctic Circumpolar Current.

This model is formulated in a two‐hemisphere basin on an equatorial β‐plane, with β = 2.3 × 10− 11 m− 1 s− 1. The
model domain is approximately half the width, length, and depth of the Atlantic Ocean. The horizontal extent of
the domain is 2,440 km in zonal direction and 9,760 km in meridional direction and is enclosed by vertical walls
everywhere except for the southernmost eighth of the domain, where the flow is zonally reentrant. The bottom is
flat with a uniform depth of 2,440 m. The model has horizontal resolution of 5.4 km and 20 vertical levels with
reduced vertical grid spacing near the surface. The model is forced by zonally uniform zonal winds and a surface
heat flux provided by relaxation to a zonally uniform surface temperature distribution. Both wind and temperature
relaxation fields are idealizations of the forcing of the Atlantic Ocean. Dissipation is provided primarily by linear
bottom drag. Since the model lacks topography, the drag coefficient must be set to a large value (damping time of
25 days) to control the transport of the circumpolar current (Gill, 1968; Tréguier & McWilliams, 1990). The
details of the model setup are described by Wolfe and Cessi (2010) and W. Zhang and Wolfe (2022).

2.2. Analysis Methods

2.2.1. Eddy Identification and Tracking

Coherent eddies are typically defined as swirling structures that can be distinguished from their surroundings (i.e.,
tracked) for a long time (e.g., many eddy turnover times) (Samelson, 2013). Based on this definition, we apply an
algorithm to identify and track coherent eddies in both the QG and PE models. We use the eddy tracking package
described by Mason et al. (2014), which provides a tracking method identical to Chelton et al. (2011) as an option.
This method detects coherent mesoscale eddies as sea surface height (SSH) extrema from snapshots of SSH. The
boundaries of eddies are identified as the outermost SSH contour that satisfies an area and amplitude threshold
and contains no more than one local SSH extremum. Eddies are then tracked by connecting the proximal eddies
within a restricted distance in successive time frames. The distance limit is determined from the local long
baroclinic Rossby wave speed, and the eddies' amplitude and radius must be within a factor of 2.5 of the cor-
responding eddies in the last time step. Only the eddies that last longer than 30 days are used. See Mason
et al. (2014) and Schlax and Chelton (2016) for details on the eddy identification and tracking algorithms.

Recent studies have used more stringent methods to identify Lagrangian coherent structures among coherent
eddies (e.g., Abernathey & Haller, 2018; Beron‐Vera et al., 2013; Haller et al., 2016; Y. Wang et al., 2016).
Lagrangian coherent structures can trap particles over their lifetimes, while ordinary coherent eddies, such as the
ones detected using the method of this section, are not necessarily Lagrangian coherent (Beron‐Vera et al., 2013;
Liu et al., 2019). Since we focus on the tracer mixing due to eddy stirring, we track coherent eddies as sustained
Eulerian features, rather than Lagrangian coherent structures.

2.2.2. Coherent Eddy Diffusivity

The trajectories of coherent mesoscale eddies are used to calculate the Lagrangian diffusivity. To account for
inhomogeneity and anisotropy, we use the modified version of the single‐particle diffusivity tensor developed by
Davis (1987, 1991),

KL
ij(x,τ) =∫

τ

0
⟨u′i (t0|x,t0)u

′
j (t0 + τ̃|x,t0)⟩Ldτ̃, (8)
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where u′i (t|x,t0) is the residual velocity of a particle at time t that was found at x at time t0. The velocity is
statistically stationary in our simulations, soKL

ij(x,τ) is independent of t0. Here u′i is taken to be the drift velocity of
the centroid of a coherent eddy to estimate a “coherent eddy diffusivity” using Equation 8. The residual velocity is
calculated as u′i = ui − 〈ui〉L, which is the deviation of the eddy velocity from the Lagrangian mean over the
ensemble of eddies, which are defined differently for the QG and PE models below. The first and last 10% of the
eddy trajectories are excluded for calculating the coherent eddy diffusivity. The rationale for this exclusion is
given in Section 3.

Considering that the meridional drift tendency due to the β‐effect is opposite between cyclones and anticyclones
(McWilliams & Flierl, 1979; Nycander, 2001), the Lagrangian mean velocity is estimated separately for cyclones
and anticyclones. The method, Equation 8, used in this study is different from that in Ni et al. (2020), who did not
remove the Lagrangian mean velocity 〈ui〉L and only calculated the meridional diffusivity instead of the whole
diffusivity tensor. We instead compute the two eigenvalues of the symmetric part of Kij, which is necessary to
reduce the bias (e.g., due to shear dispersion) of the diffusivity estimate (Griesel et al., 2014; Oh et al., 2000), and
focus on analyzing the minor (i.e., second) eigenvalue of the tensor. The minor eigenvalue usually corresponds to
mixing across the mean flow, is less biased by the shear dispersion, and is more relevant to eddy tracer transport
since along‐stream transport is typically dominated by the mean flow.

In the QG model, the Lagrangian mean velocity is the average over coherent eddies in the whole domain, since the
flow is statistically homogeneous. The maximum integration time lag τ is taken as five times the eddy turnover
time τe,

τ = 5τe =
10

̅̅̅
2

√
π

̅̅̅̅̅̅

ζ′2
√ , (9)

where ζ is the vorticity and ( ⋅ ) is a 15‐year and domain average in the upper layer. The time scale, τ, is chosen to
account for the different lifetimes of coherent eddies in different simulations, as the eddy lifetime depends on the
eddy turnover time, as found by W. Zhang et al. (2020). Five times the eddy turnover time is about 20–70 days in
most of the QG simulations, which is comparable to the eddy lifetime and allows the Lagrangian diffusivity to
asymptote to a constant value during this time period. A longer time window (e.g., seven times eddy turnover
time) is also tested (not shown), which does not qualitatively change the results. The eddy tracks that are used to
estimate Kij are grouped in overlapping 100‐day time windows with a 15‐day interval, which is similar to the
pseudo‐track approach used by previous studies (e.g., Chen & Waterman, 2017; Klocker, Ferrari, LaCasce, &
Merrifield, 2012; Swenson & Niiler, 1996).

In the PE model, the Lagrangian average and integration time lag τ are taken to be different from those in QG
model to account for flow inhomogeneity. The domain is divided into a set of 304 × 304 km spatial bins and the
mean eddy velocity is estimated as the average velocity of all coherent eddies within each bin. The Lagrangian
diffusivity is then calculated using the segments of coherent mesoscale eddy trajectories that start from those bins.
The size of the spatial bin (304 km) is chosen because it can contain sufficient number of coherent eddy tracks for
the diffusivity calculation and also not so large that it averages away the spatial variability. The bin size evenly
divides the model domain into 32 × 8 bins in the meridional and zonal directions, respectively. The integration
time lag,

τ = max(
Δx

〈|ucoh|〉L
, 30 days), (10)

is chosen to ensure that most of the eddies remain in the same bin during the integration time of the diffusivity
calculation. In Equation 10, Δx is half the length of the bin, |ucoh| is the speed of coherent eddies, and 30 days is the
minimum lifetime of coherent eddies required by the eddy tracking method in Section 2.2.1.

Note that the Lagrangian diffusivity tensor, KL
ij, has four components, but only the symmetric component con-

tributes to diffusion. The two eigenvalues of the symmetric part of Kij give the diffusivities in the directions of the
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associated eigenvectors, which are often aligned parallel and perpendicular to the mean flow direction (Fox‐
Kemper et al., 2013; Riha & Eden, 2011), topographic gradients (Isachsen, 2011; Mechoso, 1980), or vorticity
gradients (Bachman et al., 2020; J. LaCasce & Speer, 1999; K. S. Smith, 2005). The diffusivities are typically
anisotropic, with the cross‐stream (approximately parallel to the PV gradient) diffusivity smaller than the along‐
stream (approximately perpendicular to the PV gradient) diffusivity.

2.2.3. Eulerian Tracer Diffusivity

The Eulerian tracer diffusivity is diagnosed and compared to the coherent eddy diffusivity in the QG and PE
models. In the QG model, the flow field is homogeneous and the background PV gradient is aligned with the
meridional direction, so the PV diffusivity is straightforward to diagnose from the PV flux and gradient averaged
over the whole domain. In the PE model, the inhomogeneity and anisotropy make it challenging to estimate the
diffusivity based on a single tracer, since the tracer gradient might vanish or misalign with the tracer flux at many
locations. We simulate a total of 27 different passive tracers and diagnose the tracer diffusivity using the multiple
tracer inversion method of Bachman et al. (2015, 2020).

In the QG model, the PV diffusivity is diagnosed from the meridional flux‐gradient relation. The coherent eddy
diffusivity is compared to the upper‐layer PV diffusivity since coherent eddies are detected from the upper layer
streamfunction (proportional to SSH). The upper‐layer PV diffusivity, κq, is calculated as

κq = −
v′1q′1
β1

, (11)

where ( ⋅ ) indicates a 20‐year and domain average, and β1 is the upper‐layer PV gradient defined in Equation 5.

In the PE model, the tracer diffusivity tensor is diagnosed by advecting multiple passive tracers, τα, with eddy‐
resolving velocity fields and inverting the course‐grained flux‐gradient relationship,

u′i τ
′
α
= − Kij∂jτα, (12)

in a least‐squares sense. In Equation 12,K is the diffusivity tensor, i and j index the horizontal spatial dimensions,
α indexes the tracer number, and repeated indices imply summation. At least three different tracers with mis-
aligned gradients are required to uniquely define K, but using more tracers (Bachman et al., 2020, suggests nine)
provides a smoother estimate and reduces bias. Note that the tracer advection is done online.

The evolution equation of the αth tracer is

∂tτα + ui∂iτα = λ( τ0α − τα), (13)

where λ is the relaxation rate and τ0α is the initial condition of αth tracer.

Following W. Zhang and Wolfe (2022), nine different initial distributions

τ01 =
y
L
, τ02 = sin

πy
L

, τ03 = cos
πy
L

,

τ04 = sin
2πx
W

, τ05 = cos
2πx
W

, τ06 = sin2πx
W

,

τ07 =
H − 2z

H
, τ08 = cos

πz
H

, τ09 = sin
2πz
H

,

(14)

are used, and tracers are relaxed to these nine initial distributions with relaxation time scales, λ− 1, of 1 year,
3 years, and 9 years, which leads to a total of 27 tracers with different distributions. Detailed reasons for choosing
these initial distributions and relaxation time scales are described in W. Zhang and Wolfe (2022).

With all 27 tracers, the diffusivity tensor is solved using the Moore‐Penrose pseudoinverse (Moore, 1920;
Penrose, 1955)—denoted by (⋅)†—to obtain
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Kij = − u′i τ
′
α
[∂jτα]

†, (15)

where ( ⋅ ) indicates a 20‐year and 304 km average. The 304 km coarsening scale is the same as the size of the
spatial bins for the Lagrangian diffusivity estimate in Section 2.2.2, so that we can make a grid‐wise comparison
between the tracer and coherent eddy diffusivities. This coarsening scale is significantly larger than the mesoscale
eddy scale and allows for the scale separation between the mean and eddies. Also, this coarsening scale roughly
represents the largest resolved scale by models with a resolution between a half and one degree, which are typical
resolutions used by many ocean climate models (Fox‐Kemper et al., 2014). Note that the largest resolved scale is
usually about several times the model grid spacing since hyperviscous damping is usually used to control noise at
the grid scale (Danilov et al., 2019). We also tried coarsening scales of 76 and 152 km and did not find significant
differences in the diagnosed tracer diffusivity (not shown).

The multiple tracer inversion method accounts for the anisotropy of eddy diffusion by diagnosing each
component of a diffusivity tensor. It is shown in W. Zhang and Wolfe (2022) that the diagnosed diffusivity tensor
is generic and is effective in representing the flux of an arbitrary tracer. The principal diffusivities are the ei-
genvalues of the symmetric part of the diffusivity tensor. The first and second eigenvalues were found to be in the
zonal and meridional directions, respectively, in most regions, except where the mean flow is strong and non‐
zonal (e.g., the western boundary currents and southeastern part of the northern subpolar region) where the
two eigenvalues align better with the along‐ and cross‐mean flow directions (W. Zhang & Wolfe, 2022). The
cross‐stream diffusivity has been the focus of many oceanic studies, since the along‐stream transport is mainly
attributed to the mean flow (e.g., Ferrari & Nikurashin, 2010; Klocker, Ferrari, & LaCasce, 2012; Riha &
Eden, 2011). Cross‐stream/meridional mixing is found to have important dynamical impacts in the Southern
Ocean, such as on the meridional heat transport and the overturning circulation (e.g., Bates et al., 2014; Chapman
& Sallée, 2017). W. Zhang and Wolfe (2022) found that the along‐stream diffusivity can be reconstructed from
the cross‐stream diffusivity with the suppressed mixing length formula of Ferrari and Nikurashin (2010). In this
study, the cross‐stream tracer diffusivity is compared with the second eigenvalue of the Lagrangian diffusivity
tensor, Equation 8, estimated using coherent eddy tracks.

3. Coherent Eddies and Tracer Diffusivity in QG Turbulence
Coherent eddies are identified and tracked in the upper layer of the QG simulations, using the eddy tracking
algorithm described in Section 2.2.1. Examples of eddy boundaries and tracks in the simulation with r* = 0.22
and β* = 0.073 are shown in Figure 1. Coherent eddies form and move randomly in QG turbulence. They also
exhibit a systematic eastward drift, a net result of the intrinsic westward propagation of eddies due to beta effect
and advection by the eastward mean flow.

The statistics of the temporal variation of eddy amplitude are studied following Samelson et al. (2014). Each eddy
amplitude time series, An(t) (n = 1, 2…, N), is normalized by the time mean over the eddy lifetime,
Ân(t) = An(t)/ Ān. Eddies with the same lifetime, T, are grouped together and their normalized amplitude is

averaged, ÂT
(t) =∑mÂ

T
m(t) (m = 1,2,…,M), where M is the number of eddies with lifetime T.

Figure 2 shows the time series of all ÂT
(t) versus the dimensionless time, t*, where t* = t/T, with 0 ≤ t ≤ T. The

normalized amplitude tends to grow during the initial stage (0 < t* < 0.1), slowly grow or decay during the mature
stage (0.1 ≤ t* ≤ 0.9), and decay rapidly during the end stage (0.9 < t* < 1). This result is consistent with that
found by Samelson et al. (2014) for the altimeter‐tracked mesoscale eddies in the ocean. Eddies tend to experience
significant merging and splitting events or interaction with submesoscale processes during their growing or
decaying stages (Samelson et al., 2016; Z. Zhang & Qiu, 2018). Since the eddy behavior during the initial and
final phases is atypical compared to the mature phase, we drop the first and last 10% of eddy trajectories before
calculating the diffusivity below.

The Lagrangian diffusivity is calculated based on the tracks of coherent eddies over the whole domain and over
10 years using Equation 8 described in Section 2.2.2. Figures 3a–3c shows the time series of the minor (i.e.,
second largest magnitude) eigenvalue of the coherent eddy diffusivity tensor, κcoh

2 , for three simulations with
r* = 0.43, 0.22, and 0.11 (and β* = 0.073). The eigenvectors associated with κcoh

2 are nearly in the meridional
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direction. The coherent eddy diffusivity, κcoh
2 , approaches the domain‐averaged meridional PV diffusivity in the

upper layer (black dashed line in Figures 3a–3c) in 20–40 days. This consistency between the diffusivity esti-
mated from coherent eddies and the upper‐layer Eulerian PV diffusivity is also found by W. Zhang et al. (2020),
where coherent eddies are identified and tracked as Lagrangian coherent structures. While the PV diffusivity can
become ill‐defined in regions with weak PV gradients (Uchida et al., 2023), the background PV gradient is held
fixed in this model and Lagrangian and Eulerian estimates of the PV diffusivity are expected to agree.

For comparison with the coherent eddy diffusivity, the Lagrangian diffusivity Equation 8 is also calculated using
the paths of a total of 1,048,576 initially uniformly spaced numerical particles advected over the whole domain.

Figure 3. Top panels: upper‐layer Lagrangian diffusivity calculated from coherent eddy tracks over 10 years. The blue line is the minor eigenvalue of the diffusivity
tensor κcoh

2 , which represents mixing in the meridional direction. Error bars are 2 times the standard error. Bottom panels: upper‐layer Lagrangian diffusivity calculated
from numerical particle trajectories. The orange line is the minor eigenvalue of the particle diffusivity tensor, κ2, averaged over 10 nonoverlapping time windows. The
shading gives 2 times the standard error for the estimates in 10 time windows. Black dashed line indicates the Eulerian PV diffusivity, κq. The parameters for the
simulations are r*= (a, d) 0.43, (b, e) 0.22, and (c, f) 0.11 and β* = 0.073.

Figure 2. Dimensionless time series of normalized amplitude for coherent eddies. Each line is the time series of normalized amplitude of eddies with the same lifetime T,
30 days ≤ T ≤ 150 days. The dimensionless time is t*= t/T, where 0 ≤ t ≤ T, and T is the eddy lifetime. The amplitude of each eddy is normalized by the mean amplitude
over its lifetime.
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The time series of the minor eigenvalue of the particle diffusivity tensor, κ2, are shown by the orange lines in
Figures 3d–3f for the same three simulations as in Figures 3a–3c. The direction of κ2 is also aligned with the
meridional direction. The diffusivity, κ2, estimated from particles also approaches the domain‐averaged Eulerian
PV diffusivity (black dashed line in Figures 3d–3f). However, it takes more than 100 days for this convergence to
occur, which is more than 5 times slower than the coherent eddy diffusivity. The slow convergence of particle
diffusivity is also found in some oceanic observations (Balwada et al., 2016; Klocker, Ferrari, LaCasce, &
Merrifield, 2012; J. LaCasce et al., 2014; Rypina et al., 2012). The finding here implies that it is more efficient to
estimate the tracer diffusivity by identifying and tracking coherent eddies than by deploying and tracking
Lagrangian particles.

The slow convergence of particle diffusivity is also apparent in the two‐particle relative diffusivity. In Appen-
dix A we compute the relative diffusivity using particle and coherent eddy pairs. The relative diffusivity of
particles initially increases with the particle separation, following the Richardson's 4/3 law (Richardson, 1926),
until the separation becomes about 100 km. This separation is generally comparable to the energy‐containing
wavelength of eddies, which is 100–250 km in these simulations. Beyond the 100‐km separation, the relative
diffusivity fluctuates and then slowly converges to the PV diffusivity after the particle separation increases by a
further 300–500 km. The relative diffusivity should behave like the single‐particle diffusivity (i.e., κ2) once the
particle separation is large enough that their motions become uncorrelated (J. H. LaCasce, 2008a). The additional
300–500 km required for the relative diffusivity to converge is consistent with the average particle drift rate
multiplied by the single‐particle diffusivity convergence time. The relative diffusivity of coherent eddies ap-
proaches to the PV diffusivity within tens of kilometers, which is much shorter than the convergence distance of
particles.

There are several possible reasons why the coherent eddy diffusivity approaches the Eulerian diffusivity faster
than the particle diffusivity. First, the coherent eddy movements are due to the low‐frequency component of
advection by the mesoscale or large‐scale flows, which dominate the mesoscale diffusivity (J. H.
LaCasce, 2008a). In contrast, particles or drifters may initially spread quickly due to filaments and other small‐
scale processes, with their movement constrained by large‐scale dynamics (e.g., the meridional PV gradient) only
on longer time/length scales. In that case, the particle diffusivity increases quickly and then slowly asymptotes to
the background Eulerian PV diffusivity, as is shown in Figures 3d–3f. Second, the diffusion itself has been found
to be due to the chaotic movement of coherent eddies in point vortex models (Aref, 1984; Weiss et al., 1998). In
this case, the diffusivity estimate based on coherent eddy tracks is directly related to the source of the diffusion.
Third, particle motion in turbulent fluids have been found to transition to the diffusive regime more slowly than
standard Brownian motion due to entrainment by surrounding fluid which generates long‐range correlations
(Chong et al., 2020; Franosch et al., 2011). If a similar effect also exists in geostrophic turbulence, it can lead to
long decorrelation time scales for particle motion and a slower transition to diffusive behavior.

The correspondence between the coherent eddy and Eulerian diffusivities is examined in broad regimes of QG
simulations by varying r* and β*. Since the coherent eddy diffusivity occasionally still displays some drift at the
end of the integration window, a “final” value is estimated by the average over the last tenth of integration
window. This final coherent eddy diffusivity (orange dashed line) and domain averaged Eulerian PV diffusivity
(blue line) are compared in Figure 4. Figure 4a shows that the coherent eddy diffusivity is consistent with the
Eulerian PV diffusivity over a range of frictions varying by an order of magnitude, except when the friction is very
small, where the coherent diffusivity is smaller than the PV diffusivity. Figure 4b shows that the coherent eddy
diffusivity matches the PV diffusivity in the regimes when β* > 0.05, while the coherent eddy diffusivity un-
derestimates the PV diffusivity when β* < 0.05. Possible explanations are discussed in Section 4.

4. WhyDoes the Coherent Eddy Diffusivity Underestimate the PVDiffusivity for Small
Beta and Friction?
Coherent eddy diffusivity tends to underestimate the PV diffusivity in simulations where beta or friction are small
(Figure 4). This result suggests that the mixing of tracers is not dominated by the movement of coherent eddies in
these simulations. To make this observation more concrete, we examine the spatial scales responsible for the
meridional PV flux, vq, by comparing the co‐spectra of v and q between simulations with small and large beta
(using β*= 0.01 and β*= 0.09 as an example). The co‐spectrum, 〈v, q〉, between the meridional velocity anomaly
v and PV anomaly q is
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〈v,q〉 = Re[v̂ ∗ q̂], (16)

where v̂ and q̂ are the spectra of v and q, respectively. Figures 5a and 5b show 〈v, q〉 (blue line) in the two
simulations with β* = 0.01 and β* = 0.09, respectively, in Figure 4b. The kinetic energy (KE) spectrum
Ê = |û|2 + |û|2 is also plotted (orange line) for comparison. The coherent eddy diffusivity underestimates the PV
diffusivity when β*= 0.01, and matches the PV diffusivity well when β*= 0.09 (Figure 4b). The peak of 〈v, q〉 is
at a smaller wavenumber than that of Ê when β* = 0.01, while they overlap when β* = 0.09. This difference
indicates that PV mixing is dominated by motions with scales larger than (equal to) the energy containing scale—
the inverse of the peak wavenumber of Ê—when β* = 0.01 (β* = 0.09). In general, the peak of the PV flux co‐
spectrum is at larger scales than the peak in the energy spectrum for β* ≲ 0.07, while the two peaks overlap for
larger values of β* (not shown).

To better understand how the relative locations of the peaks of PV flux and energy spectra relate to the flow in
physical (rather than spectral) space, we introduce a low‐wavenumber cutoff, kc, that satisfies

∫

kc

0
〈v,q〉 dk = 0.8∫

kmax

0
〈v,q〉 dk, (17)

where kmax is the largest resolved wavenumber. Motions with wavenumber smaller than kc thus account for 80%
of the total PV mixing. Figures 5c and 5d show snapshots of upper‐layer streamfunction anomaly for the two
simulations with β* = 0.01 and β* = 0.09, respectively. Black dashed lines indicate low‐pass filtered stream-
function field using the cutoff kc. Mesoscale eddies appear as local streamfunction extrema in the shading. The
eddies have similar sizes in both simulations, consistent with their similar peak wavenumbers of the energy
spectrum Ê in Figures 5a and 5b. In the β* = 0.01 simulation, the low‐pass filtered contours capture large‐scale
structures represented by patches of positive or negative streamfunction anomalies. These patches consist of
multiple same‐signed eddies that are correlated through their velocity fields. These long‐range correlations be-
tween multiple eddies signal that mixing is nonlocal in physical space, which is why the peak of 〈v, q〉 appears at
smaller wavenumbers than that of Ê. In the β* = 0.09 simulation, the filtered contours predominantly capture
individual coherent eddies, with fewer long‐range correlations due to limited correlations between same‐signed
eddies. Consequently, the mixing is local in physical space and dominated by individual coherent eddies in this
simulation.

Figure 4. Comparison between the upper‐layer PV diffusivity (blue line) and the final value of the meridional diffusivity from
coherent eddy tracks (orange line) in simulations with varying (a) r* (with β*= 0.073) and (b) β* (with r*= 0.22). Error bars
are two times the standard error, which is the rms of the individual standard errors over the last tenth of the integration time
window.
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Long‐range correlations between eddies are also evidenced by the slope of KE spectra in Figure 6, where KE
spectra of different simulations are normalized by their peak value and the corresponding horizontal wave-
numbers for comparison. The slope of energy spectrum on the left of the peak (i.e., scales larger than the energy‐
containing scale) is shallower in the simulation with β*= 0.01 than that with β*= 0.09, indicating relatively more
energy at scales larger than the energy‐containing scale in the former. This result is consistent with the prevalence
of large patches of streamfunction anomalies formed by long‐range correlations between individual eddies in the
simulation with β* = 0.01.

Overall, the energy spectrum becomes shallower than k3 at scales larger than the energy‐containing scale when
β* < 0.07 (Figure 6b) or when r* < 0.1 (Figure 6a). This result is consistent with the prevalence of long‐range
correlations between the eddies in those simulations with small beta or friction (not shown), which are similar to
the results in the simulation with β* = 0.01 (Figures 5a and 5c). Geostrophic turbulence theory holds that the

Figure 5. Top panels: upper‐layer spectrum of meridional PV flux (blue) and kinetic energy (orange) in the simulations with (a) β* = 0.01 and (b) β* = 0.09 in Figure 4.
2D spectra are azimuthally integrated to obtain 1D spectra. Red dashed line indicates the wavenumber below which 80% of the meridional PV flux is contained. Bottom
panels: Snapshots of upper‐layer streamfunction anomaly fields for the simulations shown in the upper panels. Black dashed lines are contours of spatially low‐pass
filtered field for the same snapshot, using a cutoff kc.
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inverse energy cascade can be halted by friction or beta (e.g., Held & Larichev, 1996; Larichev & Held, 1995;
Rhines, 1975), so smaller friction or beta leads to larger fraction of energy at large scales. According to mixing
length theory, larger scale motions are more efficient in mixing due to their larger mixing lengths. In addition, a
stronger inverse energy cascade tends to make eddies more barotropic (L. Wang et al., 2016). Barotropic eddies
have a longer range of influence than baroclinic eddies due to their Green's functions (Bracco et al., 2004;
Provenzale et al., 2008). Consequently, tracer mixing is increasingly dominated by the large eddy patches rather
than individual eddies as beta or friction is made smaller, resulting in a tracer diffusivity that is larger than the
coherent eddy diffusivity.

5. Application to Inhomogeneous 3D Ocean Circulation
The coherent eddy diffusivity and the tracer diffusivity are further compared in the PE model, described in
Section 2.1.2. This model contains multiple gyres, western boundary currents, and a circumpolar current in the
channel (Figure 7e) (see also W. Zhang & Wolfe, 2022). The mean and turbulent flows in this model are
inhomogeneous, which is an important property of the World Ocean that idealized models typically used to study
turbulence—like the QG model of the previous section—often lack. This PE model thus provides a more stringent
test for the relationship between coherent eddy movement and tracer diffusivity than the QG model.

5.1. Coherent Eddy Diffusivity

Coherent eddies are detected and tracked using SSH snapshots at a 3‐day interval in the PE model, using the
method described in Section 2.2.1. The tracks of the 28 205 cyclonic and 22 678 anticyclonic eddies identified
over the 20 years simulation are shown by the blue and red lines, respectively, in Figure 7e. Coherent eddy tracks
cover most parts of the model domain, except for the tropics and a quiescent region in the western part of the
northern subpolar gyre.

Unlike the QG model, which has a fixed Rossby deformation radius, the deformation radius in the PE model
varies from about 10 km at high latitude to larger than 100 km in the tropics with a similar distribution to the
World Ocean (Chelton et al., 1998; W. Zhang & Wolfe, 2022). The nondimensional planetary vorticity gradient,
β*, is estimated by the Charney‐Green number (Charney, 1947; Green, 1960) in the same model by W. Zhang and
Wolfe (2022) (their Figure 2), which shows that β* is larger than 0.05 at most of the latitudes, except the southern
part of the channel. This means that most of the regions in this model are characterized by values of β* that are in
the regime where the coherent and Eulerian diffusivities agree in the QG model (Section 3). The magnitude of β*
becomes larger than 0.2 (the largest value used in the QG model) in the subtropics. The regime with β* > 0.2 is

Figure 6. Normalized 1D upper‐layer kinetic energy spectra for simulations with varying (a) r* (with β* = 0.073) and (b) β*
(with r* = 0.22). The energy spectrum Ê = |û|2 + |v̂|2, where û and v̂ are the Fourier transform of the zonal and meridional
velocity anomalies, and ⋅ indicates a 20‐year average. The 1D spectrum is obtained as the azimuthal integral of the 2D spectrum.
Each energy spectrum is normalized by its maximum, Êmax. The horizontal wavenumber k is also normalized by the
wavenumber corresponding to Êmax, k0. The black dashed line indicates the slope of k3.
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never tested in the two‐layer QG model because this value of β* stabilizes the two‐layer system to baroclinic
instability. In the PE model, we find the baroclinic instability is mainly due to that the PV gradient changes sign
near the surface in the subtropics, which is a Charney‐type instability (Charney, 1947; Tulloch et al., 2011) and
not simulated by the two‐layer QG model.

The Lagrangian diffusivity tensor is calculated using coherent eddy tracks in 304 × 304 km spatial bins, as
described in Section 2.2.2. The first and last 10% of eddy tracks are excluded before calculating the diffusivity, as
with the QG model. Figures 7a–7d show the minor (i.e., the second largest magnitude) eigenvalue of the
Lagrangian diffusivity tensor estimated using coherent eddy tracks in the four regions shown by the black boxes in
Figure 7e. The direction of the corresponding eigenvector is within 15° of the meridional direction except in the
western boundary currents, where the eigenvector is about 30° from the meridional direction. The time series of
coherent eddy diffusivity in this model are similar to those of the meridional coherent eddy diffusivity in the QG
model. The coherent eddy diffusivity rises rapidly within the first 10–20 days and then stabilizes (with some
fluctuations) within about 20–40 days in most of the regions. The “final” value of the diffusivity is taken as the
average over the last three time steps (i.e., 9 days) of the integration window, described in Section 2.2.2.

Figure 7. (a–d) Minor eigenvalue of the diffusivity tensor estimated from coherent eddy tracks in the four bins labeled (a–d) in (e) from the idealized basin circulation
model. Error bars are 2 times standard error. (e) Cyclonic (blue) and anticyclonic (red) eddy trajectories in 20 years (there are sightly more cyclonic eddies than
anticyclonic eddies, though many of the trajectories obscure each other here). Black lines indicate 20‐year‐mean SSH contours.

Journal of Advances in Modeling Earth Systems 10.1029/2023MS004004

ZHANG AND WOLFE 14 of 25

 19422466, 2024, 4, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023M

S004004 by T
est, W

iley O
nline L

ibrary on [09/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Ni et al. (2020) found that the meridional diffusivity estimated from tracks of coherent eddies kept increasing with
time rather than stabilizing at many locations in the ocean, which is different from what we find for the minor
diffusivity in Figure 7. The reason is likely because we remove the Lagrangian mean from the eddy velocity in the
diffusivity calculation in Equation 8 and estimate the minor principal component of the diffusivity tensor, both of
which are necessary to reduce the bias (e.g., due to shear dispersion) of the diffusivity estimate (Griesel
et al., 2014; Oh et al., 2000). We find that the coherent eddy diffusivity estimate has greater variance (i.e., larger
error bars) if we do not remove the Lagrangian mean (not shown). Note that the diffusivity integration window
used by Ni et al. (2020) (their Figure B1) is significantly longer than that used here, because the lifetime of eddies
in our model is shorter—generally less than 100 days—than those in the ocean, where a significant fraction of
eddies live longer than 16 weeks (Chelton et al., 2011). The horizontal and vertical extent of our model is about a
half of the Atlantic Ocean, so the eddies in this model might be more impacted by the strong bottom friction and
eddy‐eddy interactions, which reduce their average lifetime. Another reason that we use relatively short inte-
gration time window is that many eddies propagate far from their initial position and experience different mixing
regimes. Using too long an integration window (50 days or longer) thus leads to bias in the diffusivity estimate.

5.2. Comparison of the Coherent Eddy Diffusivity to the Tracer Diffusivity

The final coherent eddy diffusivity is compared with the local tracer diffusivity estimated using the multiple tracer
inversion method, described in Section 2.2.3. The vertical profiles of the minor diffusivity in the four black boxes

Figure 8. Vertical profiles (blue lines) of the second eigenvalue of the tracer diffusivity tensor diagnosed in the same bins as
the coherent eddy diffusivities in Figure 7. Orange dashed line indicates the final second eigenvalue of the coherent eddy
diffusivity tensor with shaded error of 2 times the standard error, which is the rms of individual standard errors over the last
9 days of the integration time window shown in Figure 7. Black and red dashed line indicates the depth where r = 1, and
z = − hL0

, respectively.
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in Figure 7e are shown as blue lines in Figure 8. The direction of the associated eigenvector is generally in the
meridional direction and is almost perpendicular to the direction of the mean flow in the upper ocean. The tracer
diffusivity has a complicated vertical structure and tends to have a subsurface maximum due to the variation of
eddy velocity with depth and the mean flow suppression effect, discussed in detail in W. Zhang and Wolfe (2022).

The final coherent eddy diffusivity in the same region is plotted as the orange dashed line in Figure 8 with
shadings of two times the averaged standard error. The tracer diffusivity has a complicated vertical structure, but
the coherent eddy diffusivity provides a single estimate in each bin. This makes the comparison between the two
diffusivities challenging. The reason for this difference is that the coherent eddies themselves are 3D structures
and move as deep water columns. The eddy swirling velocity and the mean flow tends to decrease with depth,
which causes the vertical variation of tracer diffusivity (W. Zhang & Wolfe, 2022). The coherent and tracer
diffusivities are most likely to be comparable at the vertical level where the translation speed of coherent eddies is
close to the eddy swirling velocity. This depth can be determined by the nonlinearity parameter, r, (Flierl, 1981)
defined as

r =
urms

c
, (18)

where urms is the rms eddy velocity estimated from a 20‐year average, and c is the intrinsic speed of coherent
eddies, estimated as

c =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

⟨
⃒
⃒ucoh − U

z⃒⃒2⟩
L

√

, (19)

where ucoh is the translation velocity of coherent eddies, and Uz is the vertically averaged mean flow.

The depth where r= 1 (black dashed line in Figure 8) is the depth where the intrinsic translation speed of coherent
eddies is equal to the movement speed of surrounding water parcels. At this depth, the coherent eddy diffusivity
(orange dashed line in Figure 8) becomes comparable to the tracer diffusivity, though the coherent eddy diffusivity
is biased low. The physical meaning of r= 1 is that it indicates the depth where eddies transition from nonlinear to
linear dynamics. The depth where r = 1 is referred as the “transition depth” hereafter. If r > 1, eddies can form
closed streamlines, while if r < 1, the streamlines do not close and the eddy is more wave‐like (Flierl, 1981). W.
Zhang and Wolfe (2022) find that the tracer diffusivity follows a mixing‐length scaling (i.e., the diffusivity is
equal to a depth‐invariant mixing length times urms) where r > 1. If we express the coherent eddy diffusivity as the
same mixing length times the eddy movement speed, we should expect the coherent eddy diffusivity to be
comparable to the tracer diffusivity at the depth where r = 1, which is consistent with the finding here. The
observation that the coherent eddy diffusivity underestimates the tracer diffusivity at this depth suggests that the
mixing length for the coherent eddy diffusivity may be smaller than that for the tracer diffusivity. This discrepancy
can occur when the tracer mixing is dominated by the long‐range eddy correlations, as discussed in Section 4.

The coherent eddy diffusivity and the tracer diffusivity at the depth where r = 1 are compared in every
304 × 304 km bin, and their spatial distribution is shown in Figures 9a and 9b. The two diffusivities share similar
spatial patterns; for example, they are strong in the western boundary current and circumpolar current regions and
weak in the gyres. A quantitative comparison at all bins is given in Figure 10a. The two diffusivities are highly
correlated (R2 = 0.7). These results suggest that the coherent diffusivity is still meaningful in inhomogeneous 3D
ocean circulations, but that it represents the diffusivity at a specific depth due to the fact that coherent mesoscale
eddies generally have deep vertical extents (Frenger et al., 2015; Z. Zhang et al., 2014) and move as a whole water
column. The coherent eddy diffusivity is biased low compared to the tracer diffusivity at depth r= 1 for many grid
points, which might be due to the occurrence of long‐range correlations between eddies, discussed in Section 4.
We do observe a surface energy spectrum with a slope shallower than k3 at scales larger than the energy‐
containing scale in these regions (not shown), indicating the presence of long‐range correlations.

5.3. Estimation of the Transition Depth

The depthwhere r= 1 is an estimate of the vertical extent of the eddies.A direct estimate of this depthwould require
the vertical profile of eddy velocities, which is usually not available fromocean observations.However, the vertical
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structure of ocean eddies has been found to bewell‐described by surface quasigeostrophic (SQG) dynamics (Isern‐
Fontanet et al., 2008; Klein et al., 2009; Lapeyre & Klein, 2006; Qiu et al., 2016), which connects the vertical scale
of eddies to their horizontal scale through the stratification. If the stratification is uniform (i.e.,N=N0) and the eddy
amplitude decays to zero at infinite depth, SQG shows that the eddy streamfunction is

ψ̂(k,z) = ψ̂(k,0)ekN0z/| f |, (20)

where ψ̂(k,z) is the Fourier transform of the eddy streamfunction at depth z, and k is the horizontal wavenumber.
The vertical decay scale of an eddy with wavenumber k is therefore |f|/(kN0).

In varying stratification, W. Zhang et al. (2024) shows the WKB approximation to the vertical structure is

Figure 9. Comparison between the distributions of the second eigenvalue of (a) coherent eddy diffusivity tensor, (b) the tracer
diffusivity tensor at the level where r = 1, and (c) the tracer diffusivity tensor at the depth where z = − hL0

.
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ψ̂(k,z) = ψ̂(k,0)exp(
k
| f |

∫

0

z
N dz). (21)

For a coherent eddy with scale L = k− 1, its e‐folding vertical scale, hL, can be obtained by solving

∫

0

− hL

N
| f |

dz = L. (22)

We assume the mean horizontal scale of coherent eddies is close to the local energy containing scale, L0, esti-
mated following Thompson and Young (2006) and W. Zhang and Wolfe (2022) as

L0 =

̅̅̅̅̅̅̅̅̅̅̅̅̅

η′2

|∇η′|2

√
√
√ , (23)

where ( ⋅ ) denotes a 20‐year mean, and η′ is the SSH anomaly relative to the mean. The vertical scale of coherent
eddies is estimated as hL0

by replacing L with L0 in Equation 22. The vertical scale hL0
is compared to the depth

where r = 1 in Figure 11. The two depths compare well in most of the regions, except in the western boundary
currents, where hL0

is an underestimate. Outside of these regions, hL0
is a good estimate of the transition depth and

has the advantage that it can be estimated from SSH and mean stratification observations.

The tracer diffusivity at the depth hL0
is compared with the coherent eddy diffusivity in Figures 9c and 10b. The

horizontal distribution of the tracer diffusivity at depths hL0
and r= 1 are quite similar and the coherent diffusivity

is more highly correlated with tracer diffusivity at hL0
than with the diffusivity at the depth where r= 1. This result

suggests that the spatial pattern of the diffusivity at the depth hL0
can be effectively estimated from the dispersion

of coherent eddies in the ocean.

6. Summary and Conclusions
This study compares the coherent eddy diffusivity—the Lagrangian diffusivity estimated from the dispersion of
coherent mesoscale eddies—with the tracer diffusivity in a QG model and a PE model. Coherent eddies are
identified and tracked in two sets of two‐layer QG simulations with varying bottom friction and β, respectively.
The meridional coherent eddy diffusivity, which is the minor eigenvalue of the diffusivity tensor, is generally
within 30% of the upper layer PV diffusivity except for simulations with the smallest values of friction and β. It
takes 20–40 days to reach an approximately stable value, which is at least 5 times faster than the meridional
Lagrangian diffusivity estimated from numerical particles inserted evenly throughout the domain. The more rapid

Figure 10. Scatter plot of the second eigenvalue of coherent eddy diffusivity tensor versus that of the tracer diffusivity tensor
at the level where (a) r = 1 and (b) z = − hL0

for all 304 × 304 km bins, excluding the estimates on the boundaries and
negative values. The one‐to‐one line is dashed orange.
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stabilization of the coherent eddy diffusivity is likely because coherent eddies are large objects and only feel the
low‐frequency component of chaotic advection, which sets the diffusivity. This result suggests that coherent eddy
dispersion may give an efficient estimate of the tracer diffusivity in the ocean.

The coherent eddy diffusivity underestimates the PV diffusivity for small β (β* < 0.05) and bottom friction
(r* = 0.1), likely to due to prevalence of large patches of streamfunction anomaly, which play a more important
role in mixing than individual coherent eddies. These large patches are formed by the coupling between multiple
same‐sign eddies, as a result of inverse energy cascade and barotropization in simulations with small β or bottom
friction (e.g., Maltrud & Vallis, 1991; L. Wang et al., 2016; Rhines, 1975). The existence of these long‐range
correlations between eddies is a symptom of shallower kinetic energy spectra at scales larger than the energy‐
containing scale. Because these long‐range correlations cover spatial scales larger than a single coherent eddy,
they are more efficient in tracer mixing and play a more important role in setting the tracer diffusivity than single
eddies. Consequently, the tracer diffusivity is larger than the coherent eddy diffusivity in simulations with small β
and friction. We therefore expect dispersion of coherent eddies to provide a good estimate of meridional mixing
where the β‐effect or friction is significant, for example, in the subtropical and midlatitude oceans.

Figure 11. Comparison between the depth of (a) h(r = 1) and (b) hL0
. (c) Zonal averages of h(r = 1) and hL0

.
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We then compare the minor eigenvalues of the diffusivity tensors estimated from coherent eddies and from tracer
inversion in the PE model. The coherent eddy diffusivity is estimated in spatial bins, using the eddy tracks that
pass through each bin. Estimates of the coherent eddy diffusivity stabilize in 20–40 days in most regions, which is
similar to what is found in the QG model. The tracer diffusivity in the PE model has a complicated vertical
structure, while the coherent eddy diffusivity provides a single estimate of the diffusivity over the whole water
column impacted by the eddies. It is found that the coherent eddy diffusivity is strongly correlated with the tracer
diffusivity at the “transition depth”—the depth where the translation speed of coherent eddies is equal to the rms
eddy velocity. This is the depth where coherent eddies transition from nonlinear dynamics to more linear, wave‐
like dynamics (W. Zhang & Wolfe, 2022). The transition depth is found to be close to the e‐folding vertical scale
of the energy‐containing eddies, which can be estimated based on SQG dynamics from SSH observations and
hydrography. The tracer diffusivity at the e‐folding depth of the energy‐containing eddies can thus be estimated
using the tracks of coherent mesoscale eddies.

The differences between the QG and PE model results are likely due to the coarse vertical resolution of the QG
model (two layers). In the QG model, coherent eddies are primarily confined to the upper layer and their
diffusivity is close to the upper‐layer tracer diffusivity. The vertical structure of tracer diffusivity is better resolved
in the PE model, and the diffusivity estimated from coherent eddies gives an estimate of the tracer diffusivity at
depth—coherent eddies generally have a great vertical extent (Z. Zhang et al., 2014), which can impact the mixing
over a broad range of depths. In addition, the eddy field is statistically homogeneous in the QG model, which
allows us to estimate a bulk upper‐layer PV diffusivity and that can be compared to the coherent eddy diffusivity
estimated over the whole domain. In the PE model, lateral mixing is inhomogeneous so coherent eddy movements
in each bin might be less representative of the local tracer diffusivity than those in the QG model.

A natural next step to verify the findings in this study is to compare the coherent eddy diffusivity with the tracer
diffusivity in a realistic and eddy‐resolving ocean model. Estimates of the full‐depth tracer diffusivity in a global
ocean model has been attempted by Bachman et al. (2020). It would be worth examining whether the coherent
eddy diffusivity is correlated with the tracer diffusivity at the e‐folding depth of the energy‐containing eddies in
such a more realistic model.

Mesoscale eddies have been routinely identified and tracked using satellite observations and provided as products
by AVISO+ Altimetry (2019). These eddy tracks could be used to estimate a Lagrangian diffusivity from ob-
servations. Indeed, Ni et al. (2020) have discussed a diffusivity calculated from coherent eddy tracks, although
their purpose and approach are different enough to make direct comparisons difficult. In particular, Ni
et al. (2020) did not remove the systematic meridional drift of coherent eddies, which results in eddy dispersion
that is often superdiffusive. In contrast, we find that the coherent eddy diffusivity in the PE model stabilizes at a
constant value. Ni et al. (2020) also do not connect their eddy diffusivity to the tracer diffusivity in the ocean
interior, while we find that the coherent eddy diffusivity is correlated with the tracer diffusivity at a depth that can
be estimated from SSH observation and hydrography.

The coherent eddy diffusivity obtains a stable value much faster than the particle diffusivity, suggesting that using
coherent eddy tracks may be more efficient than using surface drifters and subsurface floats to estimate diffu-
sivity, though the coherent eddy diffusivity does not estimate the tracer diffusivity at the same depth as the drifters
and floats do. Connecting these diffusivity estimates require knowledge of the vertical structure of eddy velocity
(W. Zhang & Wolfe, 2022). Ni et al. (2023) provides an estimate of full‐depth eddy kinetic energy based on
composite analysis of altimeter and Argo observations. Such a data set can be used to combine the deep diffusivity
estimated from coherent eddies, the surface diffusivity estimated from drifters (e.g., Zhurbas et al., 2014), and the
subsurface diffusivity estimated from floats and Argo (e.g., J. LaCasce et al., 2014; Balwada et al., 2016; Roach
et al., 2018) to infer the full vertical profile of the tracer diffusivity. This approach will be pursued in future work.

Appendix A: Relative Diffusivity
The relative diffusivity is estimated using pairs of particles. Provided both are defined, the relative diffusivity
asymptotes to the absolute (i.e., single‐particle) diffusivity described by Equation 1 at sufficiently large particle
separations (J. H. LaCasce, 2008a). We compute the relative meridional diffusivity using particle pairs in the QG
model following LaCasce and Bower (2000) via
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κrp (r,r0) =
1
4

d
dt

〈yr(t,r0)2〉p, (A1)

where yr(t, r0) is the meridional separation between particle pairs that have an initial separation r0 and 〈⋅〉p in-
dicates the mean over all particle pairs. Note that Equation A1 is one‐half the relative diffusivity defined by
LaCasce and Bower (2000). With this factor, κrp is supposed to converge to the single‐particle diffusivity when
particle velocities are uncorrelated (J. H. LaCasce, 2008a). Figures A1a–A1c show the upper‐layer relative

meridional diffusivities as a function of pair separation,
̅̅̅̅̅̅̅̅̅̅
〈r2〉p

√
, for the three simulations in Figure 3. The relative

diffusivity follows a 4/3 power law for separations less than about 100 km, a regime similar to the results of
Richardson (1926). This separation is comparable to the energy‐containing wavelength, 148 km, 175 km, and
248 km, in these three simulations with r* = 0.43, 0.22, and 0.11, respectively. Since the PV flux cospectrum
generally peaks around or slightly larger than the energy‐containing scale (Figure 5), the length scales associated
with the particle (Lagrangian) and PV (Eulerian) diffusivities are consistent. Beyond 100 km, the relative
diffusivity slowly converges to the PV diffusivity when the separation increases further by 300–500 km in these
simulations. This slow convergence does not depend on the initial separation: we tried several initial separations
(2.4, 20, 100, 400 km) and found that the particles always drift hundreds of kilometers apart before the relative
diffusivity converges to the PV diffusivity.

The relative diffusivity is also computed using coherent eddy pairs. Coherent eddies are paired for cyclonic
eddies, anticyclonic eddies, and all eddies separately with an initial separation of 400 km. This large initial
separation is required to ensure a sufficiently large sample of eddy pairs, since the number of eddy pairs decreases
rapidly with decreasing separation below 400 km. The relative coherent diffusivities generally approach the PV
diffusivity within a 20 km increment of separation. The relative coherent diffusivity slightly underestimates the
PV diffusivity in Figure A1f, which could be attributed to the smaller sample size of eddy pairs, leading to larger
uncertainty of the diffusivity estimate in this simulation.

Figure A1. Top panels: Upper‐layer relative meridional diffusivity (blue line) calculated from particle pairs, κrp, with an initial separation of 2.4 km. The black dashed
line indicates the Eulerian PV diffusivity, κq. Bottom panels: Upper‐layer relative meridional diffusivity calculated from coherent eddy pairs, κrcoh, with an initial
separation of 400 km. Blue, orange and green lines are the relative diffusivities computed using cyclonic, anticyclonic, and all eddy pairs, respectively.
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Data Availability Statement
Model configuration, analysis scripts, data files used for this study are available at https://doi.org/10.5281/zen-
odo.8298569 (W. Zhang, 2023).
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