Proceedings of the ASME 2023

ICE Forward Conference

ICEF2023

October 8-11, 2023, Pittsburgh, Pennsylvania

ICEF2023-110524

A DEEP LEARNING APPROACH TO PREDICT IN-CYLINDER PRESSURE OF A COMPRESSION IGNITION ENGINE

Rodrigo Ristow Hadlich'2:3, Jason Loprete':?:3, Dimitris Assanis'-2:3*,

'Department of Mechanical Engineering, Stony Brook University, Stony Brook, NY
2|nstitute for Advanced Computational Science, Stony Brook, NY
8 Advanced Energy Research and Technology Center, Stony Brook, NY

ABSTRACT

As emissions regulations for greenhouse gas emissions be-
come more Sstrict, it is important to increase the efficiency of
engines by improving on the design and operation. Current
optimization methods involve performing large numbers of ex-
perimental investigations on physical engines or making use of
detailed Computational Fluid Dynamics modeling efforts to pro-
vide visual and statistical insights on in-cylinder behavior. The
latter still requires experimental data for model validation. Both
of these methods share a common set of problems, that of being
monetarily expensive and time consuming. Previous work has
proposed an alternative method for engine optimization using
machine learning (ML) models and experimental validation data
to predict scalar values representing different parameters. With
such models developed, one can then quickly iterate on operat-
ing conditions to find the point that maximizes an application-
dependent reward function. While these ML methods provide
information on individual performance parameters, they lack key
information of in-cylinder indicators such as cylinder pressure
traces and heat release curves that are traditionally used for per-
formance analysis. This work details the process of implement-
ing a Multilayer Perceptron (MLP) model capable of accurately
predicting crank-angle resolved high-speed in-cylinder pressure
using equivalence ratio, fuel injection pressure and injection tim-
ing as input features. It was demonstrated that the model was
able to approximate engine behavior with mean squared error
lower than 0.05 on a 1-55 range in the test set. This approach
shows potential for greatly accelerating the optimization process
in engine applications.

NOMENCLATURE
Abbreviations

aTDC After Top Dead Center
CAD Crank Angle Degrees
COV Coefficient of Variation

*Corresponding author: dimitris.assanis @stonybrook.edu

EVC Exhaust Valve Closing

EVO Exhaust Valve Opening

HPO Hyperparameter Optimization
IMEP Indicated Mean Effective Pressure
IVC Intake Valve Closing

IVO Intake Valve Opening

MAE Mean Absolute Error

ML Machine Learning

MLP Multilayer Perceptron

MSE Mean Squared Error

ReLU Rectified Linear Unit

RPM Rotations per Minute

TDC Top Dead Center

Greek letters
1) Equivalence Ratio

Superscripts and subscripts
n Net

1. INTRODUCTION

With the imminent threat of global warming due to the excess
of greenhouse gases in the atmosphere, emissions regulations are
becoming stricter. Although the percentage of electric vehicles
on the road is increasing, engines are still expected to be largely
present in the transportation sector in the near future. In par-
ticular compression ignition engines, which are mostly used in
heavy-duty vehicles that tend to have high load and long range
requirements, and are thus difficult to electrify. In order to keep
up with the changing regulations, engines must be optimized to
convert energy efficiently while keeping emissions low.

The most reliable method of engine optimization is to per-
form physical experiments and tune parameters to set of condi-
tions that optimizes a given output parameter or reward function.
However, it is expensive and time consuming since it requires a
great deal of trial and error and experiments take long to reach
steady state operation at each operating condition. One way to im-
prove on this optimization process is to have numerical models

Copyright © 2023 by ASME

of the engine that can quickly iterate on the operating condi-
tions and generate outputs that closely agree with experimental
data. Traditional engine models involve zero-dimensional [1-3],
one-dimensional [4], and three-dimensional [5—8] computational
models that take into account varying levels of detail about the
physics of the engine breathing events as well as the combustion
process. However, each of these presents drawbacks when ap-
plied in engine optimization. One of the shortcomings in all of
these models is the time and effort required to properly tune the
model so that it agrees with experimental results, which can be
quite significant. In addition, 3D Computational Fluid Dynamics
models are also extremely expensive when it comes to computa-
tional resources, and thus become even more expensive and time
consuming than physical experiments. Reduced Order Modeling
methods have also been applied in previous work [9-11] to aid
physics models in predicting engine behavior, but suffer from an
extensive calibration process. A reduced order modeling method
was also compared to Machine Learning (ML) algorithms in [12],
where the ML based algorithm showed significant improvement
in performance.

Considering the shortcomings of physics-based methods, the
applications of ML algorithms to study engine control and mod-
eling [13] as well as general combustion science [14] and chem-
istry [15] have been extensively studied in recent years. In engine
modeling, the principle of ML methods is that they operate in a
data-driven black-box approach, where the input/output relation-
ship from experimental data is non-linear and multi-dimensional,
and the ML model is used to curve-fit in this multi-dimensional
space. This is appealing from an optimization perspective be-
cause if a (relatively) small dataset is generated across a wide
range of operating conditions, the ML model can learn from this
data and quickly predict engine behavior at any point inside the
sampled range and thus find optimal operating conditions. Many
attempts at predicting engine behavior with ML models have
been successful, such as predicting exhaust gas temperature [16],
brake power [17], torque [17, 18], brake specific fuel consumption
[17-19], emissions concentrations [17, 19-21], engine efficiency
[19], combustion timing of a Homogeneous Charge Compression
Ignition (HCCI) engine [22], and exergetic parameters [23].

There have been efforts in existing literature to predict en-
gine in-cylinder pressure using Extreme Learning Machine [24].
The model detailed in [24] used the crankshaft position and in-
stantaneous engine speed as inputs to the model, and for every
combination of crankshaft position and engine speed it predicts a
value for the in-cylinder pressure. However, such a model would
only work to quantify the in-cylinder pressure for an engine with
previously tuned and fixed parameters in the Engine Control Unit,
meaning at a given engine speed all parameters would be constant
independent of throttle position. While it would allow for having
on-board access to the in-cylinder pressure in a vehicle on the
road, it would not be useful in the engine research and optimiza-
tion process. To the best of the authors’ knowledge, there are
currently no deep learning models that can predict crank-angle
resolved in-cylinder pressure while taking into account many op-
erating conditions to make the model more flexible and allow for
a broader exploration process.

Once a model that can reliably and quickly predict engine

behavior is obtained, it can be coupled with numerical optimiza-
tion algorithms to find the operating conditions that maximize a
reward function. This reward function can be specified by the
user depending on the application. ML methods are great candi-
dates to be used with such algorithms due to its high accuracy and
low computational cost, as demonstrated in literature. Examples
include using this pathway to optimize engine geometry [25-30]
as well as engine operating parameters [25, 29, 31].

Therefore, in this work a Multilayer Perceptron (MLP) model
was developed to predict crank-angle resolved in-cylinder pres-
sure values for internal combustion engines, in this case a com-
pression ignition engine, using as input the equivalence ratio, fuel
injection timing and fuel injection pressure. Experimental data
was collected in-house and used for training and validation of the
model. Hyperparameter Optimization (HPO) was performed to
find the optimal hyperparameters for the model.

2. METHODOLOGY

The following section provides details about the data col-
lection process, as well as the hardware and software used, and
insights on the parameters of the model, the model optimization
process and data pre-processing.

2.1 Experimental Setup and Procedure

In order to properly train and test the model, a symmetric
and consistent data set is ideal. The data used in this work was
collected in-house using a single-cylinder compression ignition
Ricardo Hydra research engine. Details of the engine geometry
are provided in Table 1. The in-cylinder pressure was measured
every 0.1 Crank Angle Degrees (CAD) using a Kistler 6045B
pressure transducer. The fuel injection pressure is measured by
a Kistler 4067E pressure sensor also at a resolution of 0.1 CAD.
The actuator to control the fuel pressure is a Bosch CP3 injection
pump, and the controls for the sensor-actuator fuel system are
implemented in an in-house LABVIEW code. The LABVIEW
code is used to display relevant information from raw as well
as processed data from the sensors and also to communicate
user inputs to the actuators. The equivalence ratio (¢) of the
combustion is measured in the exhaust runner by a LambdaCAN,
and it is controlled by manually setting the desired opening time
of the fuel injector in the LABVIEW code. A DyneSystems eddy
current dynamometer is connected to the engine’s crankshaft via
a driveshaft and is used to measure the torque output as well as
to control the engine speed according to the desired user input.

Throughout the experiments the engine speed was held con-
stant at 1200 rotations per minute (RPM). In order to protect
engine parts from damage due to excessive pressure increase, the
knock limit was established to be when the maximum pressure
rise rate (MPRR) exceeded 10 bar/CAD, so only data points that
fell below this threshold were recorded. The procedure adopted
for the experiments was to first set a desired fuel injection pressure
and ¢. Once the engine was operating at these conditions, a fuel
injection timing sweep was performed where the injection timing
was varied from knock limit to misfire limit, with the step size
varying depending on how wide the range of possible injection
timings between knock and misfire limits was. Once the injection
timing was swept at a given ¢ and fuel injection pressure, the ¢

Copyright © 2023 by ASME

TABLE 1: EXPERIMENTAL SETUP DETAILS

Stroke [mm] 86
Bore [mm] 79
Connecting Length Rod [mm)] 160
Compression Ratio 15.5:1
Number of Valves per Cylinder 4
Piston Pin Offset [mm] 0.6

Exhaust Valve Opening (EVO) [°aTDC] 122
Exhaust Valve Closing (EVC) [©aTDC] 366
Intake Valve Opening (IVO) [°aTDC] -354
Intake Valve Closing (IVC) [°aTDC] -146

was increased and the same process of injection timing sweep was
repeated. The values of ¢ were varied from 0.2 to 0.4 in steps of
0.05. Once all injection timings and all ¢ values were explored
at a given injection pressure, the injection pressure was increased
and the same injection timing and ¢ sweeps were performed. The
fuel injection pressure was varied from 450 bar to 850 bar in steps
of 100 bar. For each point in this exploration matrix two files were
saved, each containing the values for 300 consecutive cycles at a
fixed condition (within experimental error). All parameters var-
ied in the experiments, namely equivalence ratio, fuel injection
pressure, and fuel injection timing, were used as inputs features
to the model, with the cylinder pressure as the output.

2.2 Computational Setup

The computer used for the model training and validation was
a Dell Precision 3660 with a 12" Gen Intel(R) Core i7-12700
Central Processing Unit and NVIDIA RTX A2000 Graphics Pro-
cessing Unit (GPU). The programming language of choice is
Python. Data pre-processing was done using the Python library
Numpy [32], and the ML models were built using the deep learn-
ing library PyTorch [33]. For the HPO process the library Optuna
[34] was used.

2.3 Model Architecture and Parameter Selection

Multilayer Perceptrons (MLP), also known as Feed Forward
Neural Networks, are the most basic of the deep learning archi-
tectures. MLP models have in general three types of layers: an
input layer, one or more hidden layers, and an output layer. As
the name suggests, the input layer contains the input data that is
being used to make a prediction. Each node in the input layer
represents one feature, or one parameter that is to be used by the
model to make the prediction. The hidden layer, or sequence of
them, is the heart of the model in which the data transformations
are performed. The goal of the hidden layers is to change the
representation of the data so that it can be linearly separable at
the output layer. Lastly, the output layer is where the predicted
values are outputted by the model. Each node in the output layer
represents one parameter that is to be predicted by the model.
Moving from the input layer in the direction of the output layer is
known as a forward pass through the model.

In MLP models, each node from one layer is connected to
every node in the next layer, and is not connected to nodes in
its own layer. This connection, or edge, is given by an affine

Hidden
Layer 2

Input Hidden
Layer Layer 1

Hidden Output
Layer 3 Layer

FIGURE 1: MULTILAYER PERCEPTRON MODEL ILLUSTRATION

transformation followed by a non-linear activation function. The
vector of values at hidden layer 7, labeled h;, can be calculated as
follows:

h; = g;(A/h;_1 +b;) 9]

Where A; is the matrix containing the weights of all the edges
connecting layer i — 1 to layer 7, h;_; is the vector containing the
values at each node of hidden layer i — 1, b; is the bias vector
for hidden layer i, and g;(-) is the non-linear activation function
for layer i. The weight matrix A; and the bias vector b; are the
trainable parameters of layer i, and the combination of weights
and biases is typically referred to as simply the weights of the
model. Figure 1 shows a diagram of an MLP model with three
input parameters, three hidden layers, and two output parameters.
Each arrow in the diagram represents an edge connecting the
previous layer to the next layer, meaning Eqn. 1 is applied to the
data from the node in the previous layer to yield the value in the
node in the following layer.

The error between the true label y and the predicted values
¥, both of which have the same dimensions and are vectors of
the same length as the number of parameters being predicted,
is given by the loss function. In order to train the weights and
biases of all the layers in the model to reduce the value of the
loss function, and thus reduce the error in the predicted values,
the gradient of the loss function with respect to the weights must
be calculated. For this, the backpropagation algorithm is used
[35], which calculates the gradient of the loss function by making
a backward pass in the computation graph given by the model.
Once the gradient is calculated, an optimization algorithm must
be employed to update the weights using this gradient. Moving
from the output layer to the input layer to calculate the gradients
and update the weights of the model is known as a backward pass
through the model.

Deep learning models such as MLPs have many hyperpa-
rameters. These are parameters that affect the performance of the
model and that must be chosen by the creator of the model. The
values of hyperparameters that optimize the performance of a

Copyright © 2023 by ASME

model tend to vary significantly depending on many factors such
as whether it is a regression or classification problem, how much
training data is available, how easily patterns can be observed in
the data, etc. Examples of hyperparameters include, but are not
limited to, the number of nodes in each hidden layer, the number
of hidden layers, the activation function, the loss function, and
the algorithm used for optimization. A common way of finding
good values for the hyperparameters for a specific problem is to
employ some form of HPO algorithm, such as grid search, to
test many different values and choices of functions and evaluate
which combination produces the best result.

2.3.1 Loss Function and Evaluation Metrics. In order for
the model to minimize the difference between true and predicted
values, a loss function must be selected to quantify the difference
between true and predicted vectors in a single scalar value. Two
of the most widely used loss functions for a regression problem
such as the one presented in this work are the Mean Absolute
Error (MAE) and Mean Squared Error (MSE). The formulas for
calculating each of these errors are listed below.

(BN .
MAE = ;;lyi—yil @)
1 n
MSE =~) (vi = $i)’ 3)
i=1

Where y represents the vector containing the true values, § rep-
resents the vector containing the predicted values, and n stands
for the number of values in y and §.

Because the MSE increases with the square of the difference
between true and predicted values, it penalizes the model more
heavily for larger discrepancies in the predicted value than the
MAE. Due to the large fluctuation in the magnitude of the pressure
values in each cycle, ranging from 1 to as high as 80, the loss
function should be aggressive in penalizing large differences so
that the model can more easily approximate the shape of an engine
pressure trace. For this reason, the MSE loss function was chosen
for this application.

While the MSE can also be used as a performance metric,
it is important to quantify the "goodness" of the fit in more than
one way. For this purpose, the coefficient of determination, or
R? score, is used. This is a tool that evaluates the linear corre-
lation between the predicted value § and the true value y. It is
usually a value between 0 and 1, with 1 indicating a strong linear
correlation. It is calculated using the formula below.

iy —§)?

2i(yi = 5)?
Where y is the vector containing the true values, ¥ is the vector
containing the predicted values, and y is the mean of the vector
y. The values reported for the R? score throughout this work are
calculated for each individual cycle, then averaged for the batch,
and lastly averaged for the set. This means that for every cycle the
R? score was calculated to analyze the linear correlation between
the true values for that cycle and the predicted values. All the
individual values for each cycle in a batch of examples were
calculated and summed, then divided by the number of examples

R*=1 4)

in the batch. Lastly, all the values for the RZ scores of all batches
were summed and divided by the number of batches in the set
(either training, validation, or test set).

2.3.2 Hyperparameters for Optimization. To get the
model to perform well, it is necessary to tune many hyperparam-
eters simultaneously. That is the purpose of the HPO process, to
train the model with different combinations of values and evaluate
which yields the best performance. However, due to the iterative
nature of HPO, it is a computationally intensive task. It was thus
decided by the authors to carefully select which hyperparameters
would be optimized during HPO and which would not, balancing
a trade-off between computation time and estimated impact on
model performance based on previous knowledge. The optimizer
for updating the weights of the model was chosen to be Adam [36]
in all cases, so it is not included in the HPO process. However,
the Adam optimizer has its own set of hyperparameters, and the
learning rate was chosen as a tunable parameter.

In this work, a common technique in ML called learning
rate decay was employed. The idea behind this technique is to
change the value of the learning rate of the optimizer as training
progresses. This is beneficial because at the start of the training
process there is a benefit to having a large learning rate so it
can explore a wide range of values for the weights of the model,
moving between many regions of the multidimensional space
formed by the model’s weights and explore many areas with
different local optima. However, as the model advances in the
training process, it should find its way to the general area with
the local optimum that yields the lowest error in the prediction,
ideally the global optimum. But with a large learning rate it will
likely not converge to the local optimum and will instead move
around it without ever reaching it. At this point the learning
rate should be decreased so it can perform a more refined search
for the optimum. There are many different strategies for how to
update the learning rate, and a very common one to use is the Step
Decay (StepLR Scheduler in PyTorch) which drops the learning
rate by a given factor (y) every given number of epochs, referred
to as the step size. In all training processes in this work the Step
Decay was used with a learning rate multiplicative factor y of 0.1
at a step size of 50 epochs.

Also on the list of hyperparameters in the HPO process are
the number of hidden layers, the number of nodes in the hidden
layers, and the choice of activation function between Rectified
Linear Unit (ReLU) [37], leaky ReL.U [38], and the hyperbolic
tangent, tanh. The batch size, which is the number of training
examples the model processes before updating the weights, was
chosen to be fixed at 32. Table 2 summarizes the hyperparameters
of the model, their range, and whether they were chosen to be
optimized in the HPO process or not. The learning rate was
sampled on a logarithmic scale between the ranges specified in
Table 2, while the number of hidden layers was sampled linearly.
As for the number of nodes in the hidden layers, a common
practice is to use a number of nodes that is a power of 2. For this
reason, the exponent n was sampled linearly and the number of
nodes used for each sample was 2".

Copyright © 2023 by ASME

TABLE 2: MODEL HYPERPARAMETERS

Hyperparameter Range of Values Optimized in HPO
Batch Size 32 No
Loss Function MSE No
Optimizer Adam No
B1.Ba.€ [Adam] 0% 0 No
Learning Rate [1074,1072%] Yes
StepLR Scheduler y 0.1 No
StepLR Scheduler
Step Size 50 epochs No
Number of Hidden [2.10] Yes
Layers
Nodes in Hidden [27,211] Yes
Layers

. . [tanh, ReL.U,
Activation Function Leaky ReLU] Yes

2.4 Data Description

Perhaps the most important part of developing a good ma-
chine learning model is understanding the data to be used. As
mentioned in Section 2.1, the data was collected in-house in
an experimental setup. For each set of operating conditions two
data points were collected, each containing 300 individual cycles.
When separating the full data set into training set, validation set,
and test set, all 300 cycles corresponding to one data point were
grouped together. Random sampling was then performed to sam-
ple which data points would be in each of the training, validation,
and test sets. This ultimately means that if, for example, data
point number 10 was sampled to be in the validation set, all 300
cycles corresponding to data point number 10 will be included in
the validation set. Using this method, the full set which contains
192 data points, or 57600 cycles, was approximately divided into
80% for the training set, 10% for the validation set, and 10% for
the test set. The sizes of the training, validation, and test sets
used were 46500, 5400, and 5700, respectively.

For each cycle the parameter to be predicted, the cylinder
pressure, contained 7200 values corresponding to the pressure
value at every crank angle degree from -360° to 360°. However,
it was found that the model was easily able to predict the behavior
atintake and exhaust strokes. The most crucial part to be predicted
was the combustion process, and for this reason it was decided
to focus the model’s efforts in predicting the pressure values only
between -100 and 200 degrees relative to firing Top Dead Center
(TDC). Therefore, the output layer of the model must have 3000
nodes, each corresponding to one pressure value between -100
and 200 degrees at a resolution of 0.1CAD. As for the input data,
the three parameters that were varied in the experiments, namely
fuel injection timing, fuel injection pressure of the cycle at time
of injector opening, and equivalence ratio ¢, were used as inputs
to the model as all three are known from previous knowledge of
the system to have significant effect on the output.

However, available hardware for determining ¢ has a sam-
pling rate lower than what is required to sample once per cycle
at the engine speed of 1200RPM. In this setup it is measured

12
o Experimental Data
10|~ _IMEP (¢)=10.5268¢ - 0.28498 e
— 8 gcaoo
S
= &
2 6F @
a" &°
= 4r e
= R?=0.97893
2 L
0--"
-2

0 0.2 0.4 0.6 0.8 1
Equivalence Ratio ¢

FIGURE 2: IME P, AS A FUNCTION OF ¢

once every two seconds, which is the equivalent of 15 measure-
ments during 300 cycles or one measurement every 20 cycles.
For this reason, feature engineering was required to make use of
all 300 cycles for each data point given that the size of the data
set contributes heavily to the performance of the model.

2.5 Data Pre-Processing

2.5.1 Feature Engineering. Because the ¢ is known from
previous experiments to have a strong linear correlation to the net
indicated mean effective pressure (/M EP,,), a statement can be
made that:

¢=fUMEP,) S

The exact form of the relationship from Eq. 5 can be obtained by
obtaining the slope of the curve generated by plotting IMEP,, asa
function of ¢. Given a group of data points, linear regression can
be performed to obtain the equation of the line that minimizes the
mean squared error between the line and the data points. Figure 2
shows the data obtained for this particular engine. Using the
equation of the line from Fig. 2 and solving for ¢, Eq. 5 can be
formally written as:

¢ = 0.095(IMEP,) —0.027 (6)

The IME P, has one value for every cycle since it is calculated
from the cylinder pressure values according to the following equa-
tion:

Icycle pav

IMEP, = %
d

(N
Where P is the instantaneous in-cylinder pressure, V is the in-
stantaneous volume in the cylinder, and V; is the displacement
volume of the engine. Another parameter that can be easily cal-
culated is the Coefficient of Variation (COV) of the IMEP,,
labeled COVaEp, , which is defined by the ratio of the standard

n’

deviation to the mean of the data set and measures the variability

Copyright © 2023 by ASME

of a data set irrespective of the mean. And because of Eq. 5, it
can be concluded that:

COVy = f(COVimEDp,) ®)

The actual form of Eq. 8 can be calculated from Eq. 6. Because
the COV quantifies the variation of a parameter, the COVy can
be calculated by taking the first derivative of ¢ with respect to the
IMEP,, or the slope of the curve of Eq. 6.

d¢

COV4(COVimEP,) = TIMEP.
n

=0.095COVipEep, (9)

With this in mind, the following procedure was used to ex-
pand the ¢ measurements into a data set of the same length and
same COV as the IMEP,, for each cycle. Because one ¢ mea-
surement is made every 20 cycles, each data point containing 300
cycles is divided into groups of 20 cycles and each group has one
¢ measurement associated to it. Then, for each group, the offset
coeflicient for each of the 20 cycles is calculated based on the
IMEP,, using the following formula:

IMEP,, — ujmEP,

MIMEP,

0 =0.095

(10)

Where IMEP,, is the vector containing the /M E P,, values and
HiMEP, 1s the mean of the IM EP,,. Using this offset coefficient,
the vector containing the values of ¢ can then be calculated.
It is assumed that the ¢ measurement associated to each group
corresponds to the ¢ value of the first of the 20 cycles in the
group. Therefore, the mean ¢ value of the group, g, can be
calculated by:

_ Pmeasured (11)

Ho = 1+ 6

InEqn. 11, ¢easureqa represents the measured ¢ value associated
with the group and §y represents the first 6 value in the group.
Finally, the vector of ¢ values corresponding to the group can be
calculated by:

¢ = pg(1+06) (12)

2.5.2 Input Normalization. Input normalization is widely
used in machine learning because it is a simple process that can
significantly speed up convergence during training. The idea
behind it is to normalize all features of the model to have a mean
of zero and be in the same range of values. This makes it so
that the gradient is calculated with the same resolution for all
features, and thus can converge at similar rates towards optima in
all directions. There are many types of input normalization, and
the one used in this work is described in the formula below:

Xnorm = X—ﬂ (13)

o

Where Xjorm is the normalized matrix containing the training
set, X is the matrix containing the raw training set, u is the vector
containing the mean of each feature of the training set, and o
is the vector containing the standard deviation of each feature of
the training set. It is important to note that when evaluating the
model with either the validation or test set, the input should be
normalized using the same mean and standard deviation as the

TABLE 3: HPO RESULTS

Hyperparameter Value
Learning Rate 6.408 - 107*
Number of Hidden Layers 10
Nodes in Hidden Layers 256
Activation Function Leaky ReLU

training set. The authors found that for the data set and model
utilized in this work the use of input normalization improved
convergence time by a factor of 4, and yielded 2 to 5 times lower
MSE loss.

2.5.3 Cylinder Pressure Filtering. The raw cylinder pres-
sure traces presented significant noise due to the inherent error
of the physical sensor as well as traveling pressure zones in the
combustion chamber. This noise was found to significantly de-
grade the performance of the model. To mitigate this, a second
order Butterworth digital filter with critical frequency of 0.05Hz
from the Scipy library was used.

3. RESULTS AND DISCUSSION

The following section provides details about the findings of
the Hyperparameter Optimization process, and the final perfor-
mance results obtained with the optimized model.

3.1 Model Optimization

The HPO process was performed using the Optuna [34] li-
brary. Optuna’s default sampling algorithm is Tree Parzan Esti-
mator [39], and this was the algorithm chosen for this work. The
search space of the HPO is described in Sect. 2.3.2. During the
HPO process, the loss function used was MSE for calculating the
gradients and updating the weights of the model, and the metrics
used to evaluate and compare the models was the coefficient of
determination, or R? score. Each model was trained using the
training data set and evaluated using the validation data set.

Two separate HPO studies were performed. Initially 2000
models with distinct combinations of hyperparameter values were
evaluated to find the optimal combination. The number of epochs
to train each model was set to 150; however, pruning was used
to reduce the number of calculations. This is a feature offered
in Optuna that monitors intermediate objective values and stops
unpromising trials early in the training process. In this initial
study it was found that the optimal number of layers for the
model was of 2, which is the lowest value in the range tested.
This behavior was unexpected seeing that models with larger
number hidden of layers, or deeper models, should be able to
generalize better to unseen data than shallow models with less
hidden layers. Shallow models tend to overfit to the training set,
and thus perform worse in unseen examples when compared to
deeper models [40]. It was then proposed that perhaps shallow
models would converge more quickly than deep models in the
early stages of training due to this overfitting tendency. And
because of pruning, the deep models were being ruled out as
possible candidates due to slow convergence in the beginning,
but would eventually achieve better performance if allowed to
finalize the training process.

Copyright © 2023 by ASME

TABLE 4: PERFORMANCE METRICS FOR TRAIN, VALIDATION,
AND TEST SETS

Metrics Train Set Validation Set Test Set
MSE 3.0288-1072 5.9731-1072 4.3985-1072
R2? 0.99982 0.99964 0.99974
B R A MSE Train = R2 Train -1.01
10 ------ MSE Val ——— R2 Val
- 1 1.00
g L0.99
R 100' -
= - o~
é = -0.98¢
= o -0.97
N T
-0.96
, 0.95
0 20 40 60
Epoch #

FIGURE 3: MSE LOSS AND R2 SCORE OF TEST AND VALIDATION
SETS DURING TRAINING OF MODEL

A second study was then performed without pruning and
with 200 combinations of hyperparameters for 100 epochs. This
study confirmed the thought proposed by showing the best per-
forming model contained 10 hidden layers, the highest number of
layers in the search space. Perhaps if more computational power
was available it would have been demonstrated that the optimal
number of hidden layers is even larger. The optimal combination
of hyperparameter values obtained from the HPO process is listed
in Table 3. However, possible overfitting was still observed in the
model after HPO, and thus regularization was applied.

3.1.1 Dropout Regularization. Regularization techniques
are commonly applied to prevent overfitting the model to the
training data set. A simple yet effective regularization technique,
known as dropout [41], works by dropping random nodes in each
layer, as well as their connections to nodes in other layers, accord-
ing to a probability p. The value of p refers to the probability
of a particular node being kept, thus a p value of 1 would mean
no nodes are dropped and p = 0 means every node is dropped.
This essentially creates different architectures each time it sam-
ples from p during training. During test time, dropout is not
applied and the final result can be thought of as an average of all
the architectures created during training. In this work, a dropout
probability p of 0.7 was used, and was found to prevent over-
fitting while not significantly reducing the training speed of the
model. Due to the working principle of dropout, and following
the practical guidance provided in [41], the number of nodes 7 in
each hidden layer was adjusted to be n/p. From the results of the
HPO, n = 256, so the final number of nodes in each hidden layer
reported in this work is 365.

3.2 Model Performance Results

Once the optimal parameters for the model were found in
the HPO, the model was trained again using a larger number of
epochs. The time required to train the model for 100 epochs using
the training data set with 46500 examples, the hyperparameter
values found in the HPO process and the computational setup
described in Sect. 2.2 was of 1028 seconds. For reference, using
the same computational setup and the same training data set, the
training time over 100 epochs of the model using the smallest
model size from the HPO search space (2 hidden layers, 128
nodes each layer) was of 787 seconds, which yielded R? values
of 0.99978, 0.99970, and 0.99970 on the training, validation,
and test data sets, respectively. On the other hand, using the
largest architecture from the HPO search space (10 hidden layers,
2048 nodes each layer) yielded a training time of 6440 seconds
and R? scores of 0.99980, 0.99958, and 0.99940 on the training,
validation, and test sets, respectively.

Figure 3 shows a double y-axis plot of the progression of the
MSE loss value (left y-axis, plotted on log scale) as well as the
R? score (right y-axis) for the training and validation sets during
the training process. As it can be seen from Fig. 3, a plateau was
reached for the MSE loss value at around epoch number 80, while
the R? score reached a plateau earlier. It can most importantly be
seen in this figure that the values of the MSE loss and R? score
are very similar for the training and validation sets, indicating
the model does not appear to be overfitting to the training data
and generalizes well to unseen examples. A summary of the
performance metrics for train, validation, and test sets is shown
in Table 4.

Because each output of the model is a sequence of values that
must be displayed together instead of a single value, it is difficult
to provide visual representation of a large number of generated
outputs of the model. For this reason, only three predictions
from the test set are shown, along with the performance metrics
calculated from them, to serve as examples and visually demon-
strate how the numbers reported in Table 4 translate to pressure
predictions. Two plots were generated for each example, one
that displays the predicted and true pressure values as functions
of crankshaft position, and one that shows the linearity of the
relationship between true and predicted pressure values.

Figure 4 shows the results of a prediction that has an average
MSE loss and R? score, in this case 4.4012 - 1072 and 0.99974,
respectively. This cycle was chosen to be the representative for
predictions with MSE and R? scores close to the average values
calculated for the validation and test data sets (Table 4). It can be
seen from Fig. 4a that there is a small discrepancy between the
timing of the start of the pressure rise rate from combustion, in
this particular case the combustion in the predicted pressure trace
begins later. This also leads to a slightly lower peak pressure
in the predicted pressure trace. However, this is a very mild
discrepancy, and one that would be expected considering cycle-
to-cycle variations in a real engine. This discrepancy is reflected
in Fig. 4b where the predicted points, plotted in orange, are
offset in a small section from the y = x parity line, which is
plotted in blue. In this linearity plot, any deviation from the blue
line represents a mismatch between true and predicted value.
Although it is very visible that there is a range of pressure values

Copyright © 2023 by ASME

= True

— 401 = Predicted '
= . .
=2
2
= 30
w
s
~
5201
g
ES
Q
= 10

00— T T y T ————

-100 =50 0 50 100 150 200

In-Cylinder Pressure [bar]

£
=]

w
=

[
=

—
>

= True

— 40 = Predicted
5 . :
=2
2
2 30
s
[-»
520
g
>
Q
_x': 101

0-— T " y " ———

-100 =50 0 50 100 150 200

Crankshaft Position [degrees aTDC]

(a) Pressure Trace with Average Correlation

50
= Parity

40 S Pr'edicted |
5301
S
D
£
= 20

R? =0.99974
10
0 - - - -
0 10 20 30 40 50
Predicted Value

FIGURE 4: PREDICTION WITH AVERAGE CORRELATION

Crankshaft Position [degrees aTDC]

(a) Pressure Trace with Good Correlation

50

True Value
IS
(=]

p—
>

(b) Linear Fit of Pressure Prediction with Average Correlation

W
=]

[
>

s Parity
—— Predicted |
R? =10.99999
10 20 30 40 50
Predicted Value

(b) Linear Fit of Pressure Prediction with Good Correlation

FIGURE 5: PREDICTION WITH GOOD CORRELATION

= True
= Predicted |

-100 -50 0 50 100 150 200

Crankshaft Position [degrees aTDC]

(a) Pressure Trace with Poor Correlation

50

True Value
-
(=)

[
>

w
>

[
=

= Parity
—— Predicted |
R2 =0.99688
0 10 20 30 40 50
Predicted Value

(b) Linear Fit of Pressure Prediction with Poor Correlation

FIGURE 6: PREDICTION WITH POOR CORRELATION

Copyright © 2023 by ASME

60

—— Parity
501 Predicted
40 -

True Value
(7]
[—}

20
R2=10.99974
10 A
0 } ! ! ! !
0 10 20 30 40 50 60
Predicted Value

FIGURE 7: LINEAR FIT OF TEST SET

for which the prediction did not match the true label, the vast
majority of points still lie along the y = x line thus yielding an
R? score of 0.99974.

In some cases the model was able to predict the pressure trace
nearly perfectly, which is the case shown in Fig. 5. The MSE
score for this example was evaluated to be 1.8804 - 1073, while
the R? score was calculate to be 0.99999. As can be observed
in Fig. 5a, all the elements of the pressure trace, including start
of combustion and peak pressure, are captured in this example of
the test set. This is further confirmed in Fig. 5b which shows that
the blue parity line and the predicted values shown in orange are
in near perfect agreement.

The last example portrays the other extreme in Fig. 6, a
prediction with quite significant differences in the combustion
portion of the pressure trace. The MSE loss for this example was
of 7.6038 - 10! and the R? score was of 0.99688. By analyzing
Fig. 6a it is clear that the start of combustion time is delayed
in the predicted value, which in turn yielded a decrease in the
maximum pressure of combustion compared to the true value.
The behavior is further confirmed in Fig. 6b where a long portion
of the predicted values (orange) fall outside of the y = x line
(blue). The R? score for this prediction is lower for this example,
however it still shows high linearity because it is able to capture
the overall trend of the cycle.

Lastly, Fig. 7 shows the linear fit of all examples from the
test set. Given how discrepancies between predicted and true
values manifest in the linear fit plot as shown in Figures 4b, 5b,
and 6b, it is expected to have a wide spread of points that deviate
from the parity line if the number of examples in the same plot is
large. Nonetheless, the linearity of the predictions is clear, which
explains the high coefficient of determination of 0.99974.

3.2.1 Model Performance Across Input Space. It was no-
ticed that most of the predictions in which the model demonstrated
relatively poor performance were for cases near the edge of the
exploration matrix of the input features. An example is shown
in Fig. 6a where the combustion occurred very late in the cy-
cle which indicates it is a cycle with late fuel injection. This
is expected given that, while ML models in general can be very

good at interpolating complex data, their accuracy significantly
decreases when extrapolating to inputs that are outside the range
of data the model was trained on [42]. However, it was found that
there is one more factor that strongly influenced the performance
of the model: the COV of the IM E P,,, referred to simply as COV
from hereon out.

To illustrate this finding, 2D scatter plots that show each
input feature plotted against each other were generated and are
shown below. The color map in these figures represent the mean
squared error of the validation and test sets, and the coefficient
of variation of the points in the training set in Figs. 8 and 9,
respectively. It can be seen by comparing Figs. 8 and 9 that in
areas where the COV of the points used in the training set is high,
the model tends to demonstrate high MSE. This can be reasoned
by considering that a high COV means that for the same value of
the inputs (within experimental uncertainty) the behavior of the
output is less consistent. In the case of this compression ignition
engine, as seen in Fig. 9, this tends to happen in regions of late
injection timing for a given equivalence ratio, and also when the
injection pressure is low, at approximately 450 bar in this case.

In addition to operating points where the COV is high, some
seemingly random outliers are found which have high MSE where
the COV is low. The authors hypothesise that this behavior is not
random, and is an artifact of the location of the point within the
experimental matrix, meaning that these outliers lie on the edge
of the range of values of at least one input feature. To make
this evident, color-coded and labeled boxes that mark the same
set of points in all subplots are included in the figures. The
points with a green box with label A, for example, lie at the
edge of values of all three features. Point C in blue, lies at the
edge of the equivalence ratio range for that injection pressure and
injection timing. The author’s explanation for these is based on
the following. Considering that a data point can only be a part of
either test, validation or training sets, if an edge case is present
in the test/validation sets, then it was not used during the training
process. Ultimately this means that, in those cases, the model is
extrapolating, thus explaining the drop in performance.

While nothing can be done regarding these outliers since
standard practice dictates the splitting of data between the differ-
ent sets should be based on random sampling, reducing the COV
of the data set is expected to improve the overall performance of
the model. A COV below approximately 5% does appear to be
low enough to maintain model performance based on the results
shown in Figs. 8 and 9.

4. CONCLUSIONS AND FUTURE WORK
The findings of this work can be summarized by the following
statements.

* Deeper networks appear to have better generalization char-
acteristics compared to shallow networks in this application
as demonstrated in the hyperparameter optimization results.

* The poor predictions of the model tend to be for examples
near the edge of the experimental matrix of the input features
and in operating points with high coefficient of variation.

* MLP models can be used to accurately predict in-cylinder
pressure in compression ignition engines within the range

Copyright © 2023 by ASME

900

900 — 0.40
l""' @ ‘ ‘.‘ al = - L 035
— 8001 Al — s A R i @
= a = = F 0.30 :a
=2 =2 s =
4 en 27 St
e e R @ Lo2s M=
2 70 _ 5 7001 =l e -qi
o Deee s | -
= ~ = E 14 ® Z
S 600 S 600 &= o e o 015 =
< g g o e@» @ g
mni: i eee @i == _]. °
= = 2 1 - e :
500 A 500 - = @ oD E
T § 00 8] Nl
. : 3 . . 0.00
4 - 0 2 020 025 030 035 040 045 02 0.3 0.4

Injection Timing [deg aTDC]

Equivalence Ratio [¢]

Equivalence Ratio [¢]

FIGURE 8: 2D SCATTER PLOT REPRESENTATION OF 3D INPUT FEATURE SPACE WITH COMMON MSE COLOR MAP FOR VALIDATION AND

TEST SETS

900

900

1l
TIRIES
K
NIRUE

800 800

700 A

700 A

600 - 600 -

Injection Pressure [bar]
Injection Pressure [bar]

500 500

"I B
d0) ‘:'A‘
anle o
) 88 ss
'YX

— 8.0
[
_’5' e 7.5
2l [, =
B O @ 02
o 31 @ £
% - G - 6.5 =
w1 @ @ s
£ - 0 Z
E 1| - s
= - a» o ss &
£ 1| O > oD o o]
bS] - anes o o %
2 1 o> e ' g
= - o
24 4.5

T T T T
—4 -2 0 2

Injection Timing [deg aTDC]

T T
0.20 0.25

0.30
Equivalence Ratio [¢]

T T T
0.35 0.40 0.45

Equivalence Ratio [¢]

FIGURE 9: 2D SCATTER PLOT REPRESENTATION OF 3D INPUT FEATURE SPACE WITH COMMON COV COLOR MAP FOR TRAINING SET

of input data used for training using equivalence ratio, fuel
injection pressure, and fuel injection timing as input features.

* The model described in this work demonstrates potential to
be a promising tool for the modeling and optimization of
internal combustion engines.

Interesting future work in this area can be done to investigate how
the error in predictions of the cylinder pressure values propagates
to other derived performance parameters such as /M EP,,, heat
release rate, and efficiencies.

ACKNOWLEDGMENTS

This work was made possible through funding from the U.S.
Office of Naval Research under Award No. N00014-22-1-2001
and through the donation of liquid fuels used in experimental
testing by Haltermann Carless. The authors would like to also
acknowledge Dr. Zhongnan Ran for sharing his experimental

10

testing knowledge on the single-cylinder facility. In addition,
the authors appreciate the insightful conversations and guidance
of Prof. Yifan Sun from the Dept. of Computer Science and
Prof. Nilanjan Chakraborty from the Department of Mechanical
Engineering, both at Stony Brook University.

REFERENCES

[1] Giglio, Veniero and di Gaeta, Alessandro. ‘“Novel regres-
sion models for wiebe parameters aimed at 0D combustion
simulation in spark ignition engines.” Energy Vol. 210
(2020): p. 118442. DOI 10.1016/J. ENERGY.2020.118442.
Yang, Ruinan, Ran, Zhongnan, Ristow Hadlich, Rodrigo
and Assanis, Dimitris. “A Double-Wiebe Function for Reac-
tivity Controlled Compression Ignition Combustion Using
Reformate Diesel.” Journal of Energy Resources Technol-
ogy Vol. 144 No. 11 (2022): p. 112301.

[3] Yang, Ruinan, Ran, Zhongnan, Ristow Hadlich, Rodrigo

(2]

Copyright © 2023 by ASME

https://doi.org/10.1016/J.ENERGY.2020.118442

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

and Assanis, Dimitris. “A Double-Wiebe Function for Reac-
tivity Controlled Compression Ignition Combustion Using
Reformate Diesel.” Journal of Energy Resources Technol-
ogy Vol. 144 No. 11 (2022): p. 112301.

Cerri, Tarcisio, Onorati, Angelo and Mattarelli, Enrico. “1D
engine simulation of a small HSDI diesel engine apply-
ing a predictive combustion model.” Journal of Engineer-
ing for Gas Turbines and Power Vol. 130 (2008). DOI
10.1115/1.2747258/470382.

Assanis, Dimitris, Engineer, Nayan, Neuman, Paul and
Wooldridge, Margaret. “Computational Development of
a Dual Pre-Chamber Engine Concept for Lean Burn Com-
bustion.” 2016. DOI 10.4271/2016-01-2242.

Nikiforakis, I, Guleria, G, Koraiem, M and Assanis, D.
“Understanding Pre-Chamber Combustion Performance in
a Closed-Cycle Model of a Novel Rotary Engine.” SAE
Technical Paper (2022)DOI 10.4271/2022-01-0396.
Guleria, Gaurav, Lopez-Pintor, Dario, Dec, John E. and
Assanis, Dimitris. “A comparative study of gasoline skele-
tal mechanisms under partial fuel stratification conditions
using large eddy simulations.” International Journal of
Engine Research Vol. 23 (2022): pp. 1658-1677. DOI
10.1177/14680874211031370.

Guleria, Gaurav, Lopez-Pintor, Dario, Dec, John E and
Assanis, Dimitris. “Development and evaluation of a
skeletal mechanism for EHN additized gasoline mix-
tures in large Eddy simulations of HCCI combustion.”
International Journal of Engine Research (2023): p.
14680874231178099.

Tang, Yuanyuan, Zhang, Jundong, Gan, Huibing, Jia,
Baozhu and Xia, Yu. “Development of a real-time two-
stroke marine diesel engine model with in-cylinder pressure
prediction capability.” Applied Energy Vol. 194 (2017): pp.
55-70. DOI 10.1016/J.APENERGY.2017.03.015.

Nuss, Eugen, Ritter, Dennis, Wick, Maximilian, Andert,
Jakob, Abel, Dirk and Albin, Thivaharan. “Reduced order
modeling for multi-scale control of low temperature com-
bustion engines.” Notes on Numerical Fluid Mechanics and
Multidisciplinary Design Vol. 141 (2019): pp. 167-181.
DOI 10.1007/978-3-319-98177-2_11/FIGURES/S.
Mayhew, Christopher G., Knierim, Karl Lukas, Chaturvedi,
Nalin A., Park, Sungbae, Ahmed, Jasim and Kojic, Alek-
sandar. “Reduced-order modeling for studying and control-
ling misfire in four-stroke HCCI engines.” Proceedings of
the IEEE Conference on Decision and Control (2009): pp.
5194-5199DOI 10.1109/CDC.2009.5400597.

Solmaz, Ozgur, Gurbuz, Habib and Karacor, Mevlut. “Com-
parison of artificial neural network and fuzzy logic ap-
proaches for the prediction of in-cylinder pressure in a
spark ignition engine.” Journal of Dynamic Systems, Mea-
surement and Control, Transactions of the ASME Vol. 142
(2020). DOI 10.1115/1.4047014/1082935.

Aliramezani, Masoud, Koch, Charles Robert and Shah-
bakhti, Mahdi. “Modeling, diagnostics, optimization, and
control of internal combustion engines via modern ma-
chine learning techniques: A review and future directions.”

11

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Progress in Energy and Combustion Science Vol. 88 (2022).
DOI 10.1016/j.pecs.2021.100967.

Zhou, Lei, Song, Yuntong, Ji, Weiqi and Wei, Haiqiao.
“Machine learning for combustion.” Energy and Al Vol. 7
(2022): p. 100128. DOI 10.1016/J.EGYAI2021.100128.
Almeldein, Ahmed and Dam, Noah Van. “Accel-
erating Chemical Kinetics Calculations With Physics
Informed Neural Networks.” Proceedings of ASME
2022 ICE Forward Conference, ICEF 2022 (2022)DOI
10.1115/ICEF2022-90371.

Liu, Jinlong, Huang, Qiao, Ulishney, Christopher and Du-
mitrescu, Cosmin E. “Machine learning assisted predic-
tion of exhaust gas temperature of a heavy-duty natural gas
spark ignition engine.” Applied Energy Vol. 300 (2021): p.
117413. DOI 10.1016/J.APENERGY.2021.117413.

Yusaf, Talal F., Buttsworth, D. R., Saleh, Khalid H. and
Yousif, B. F. “CNG-diesel engine performance and ex-
haust emission analysis with the aid of artificial neural net-
work.” Applied Energy Vol. 87 (2010): pp. 1661-1669.
DOI 10.1016/J.APENERGY.2009.10.009.

Togun, Necla Kara and Baysec, Sedat. “Prediction of torque
and specific fuel consumption of a gasoline engine by using
artificial neural networks.” Applied Energy Vol. 87 (2010):
pp. 349-355. DOI 10.1016/J.APENERGY.2009.08.016.
Khatri, Kamal Kishore, Singh, Mandeep and Khatri, Naren-
dra. “An artificial neural network model for the prediction
of performance and emission parameters of a CI engine-
operated micro-tri-generation system fueled with diesel,
Karanja oil, and Karanja biodiesel.” Fuel Vol. 334 (2023):
p- 126549. DOI 10.1016/J.FUEL.2022.126549.

Pillai, Rinav, Triantopoulos, Vassilis, Berahas, Albert S.,
Brusstar, Matthew, Sun, Ruonan, Nevius, Tim and
Boehman, André L. ‘“Modeling and Predicting Heavy-
Duty Vehicle Engine-Out and Tailpipe Nitrogen Oxide
(NO x) Emissions Using Deep Learning.” Frontiers in
Mechanical Engineering Vol. 8 (2022): p. 11. DOI
10.3389/FMECH.2022.840310/BIBTEX.

Bai, Femilda Josephin Joseph Shobana, Shanmugaiah, Kali-
raj, Sonthalia, Ankit, Devarajan, Yuvarajan and Varu-
vel, Edwin Geo. “Application of machine learning
algorithms for predicting the engine characteristics of
a wheat germ oil-Hydrogen fuelled dual fuel engine.”
International Journal of Hydrogen Energy (2022)DOI
10.1016/j.ijhydene.2022.11.101.

Vaughan, Adam and Bohac, Stanislav V. “Real-
time, adaptive machine learning for non-stationary, near
chaotic gasoline engine combustion time series.” Neu-
ral Networks Vol. 70 (2015): pp. 18-26. DOI
10.1016/J.NEUNET.2015.04.007.

Shamshirband, Shahaboddin, Tabatabaei, Meisam, Agh-
bashlo, Mortaza, Yee, Por Lip and Petkovi¢, Dali-
bor. “Support vector machine-based exergetic mod-
elling of a DI diesel engine running on biodiesel-diesel
blends containing expanded polystyrene.” Applied Ther-
mal Engineering Vol. 94 (2016): pp. 727-747. DOI
10.1016/J.APPLTHERMALENG.2015.10.140.

Copyright © 2023 by ASME

https://doi.org/10.1115/1.2747258/470382
https://doi.org/10.4271/2016-01-2242
https://doi.org/10.4271/2022-01-0396
https://doi.org/10.1177/14680874211031370
https://doi.org/10.1016/J.APENERGY.2017.03.015
https://doi.org/10.1007/978-3-319-98177-2_11/FIGURES/5
https://doi.org/10.1109/CDC.2009.5400597
https://doi.org/10.1115/1.4047014/1082935
https://doi.org/10.1016/j.pecs.2021.100967
https://doi.org/10.1016/J.EGYAI.2021.100128
https://doi.org/10.1115/ICEF2022-90371
https://doi.org/10.1016/J.APENERGY.2021.117413
https://doi.org/10.1016/J.APENERGY.2009.10.009
https://doi.org/10.1016/J.APENERGY.2009.08.016
https://doi.org/10.1016/J.FUEL.2022.126549
https://doi.org/10.3389/FMECH.2022.840310/BIBTEX
https://doi.org/10.1016/j.ijhydene.2022.11.101
https://doi.org/10.1016/J.NEUNET.2015.04.007
https://doi.org/10.1016/J.APPLTHERMALENG.2015.10.140

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

Mariani, Viviana Cocco, Och, Stephan Hennings, dos
Santos Coelho, Leandro and Domingues, Eric. “Pres-
sure prediction of a spark ignition single cylinder en-
gine using optimized extreme learning machine models.”
Applied Energy Vol. 249 (2019): pp. 204-221. DOI
10.1016/J.APENERGY.2019.04.126.

Badra, Jihad A., Khaled, Fethi, Tang, Meng, Pei, Yuan-
jiang, Kodavasal, Janardhan, Pal, Pinaki, Owoyele, Ope-
oluwa, Fuetterer, Carsten, Mattia, Brenner and Aamir, Fa-
rooq. “Engine Combustion System Optimization Using
Computational Fluid Dynamics and Machine Learning: A
Methodological Approach.” Journal of Energy Resources
Technology, Transactions of the ASME Vol. 143 (2021).
DOI 10.1115/1.4047978/1086007.

Mohan, Balaji and Badra, Jihad. “An automated machine
learning framework for piston engine optimization.” Appli-
cations in Energy and Combustion Science Vol. 13 (2023):
p- 100106. DOI 10.1016/J.JAECS.2022.100106.

Badra, Jihad, Khaled, Fethi, Sim, Jacheon, Pei, Yuanjiang,
Viollet, Yoann, Pal, Pinaki, Futterer, Carsten, Brenner, Mat-
tia, Som, Sibendu, Farooq, Aamir and Chang, Junseok.
“Combustion System Optimization of a Light-Duty GCI
Engine Using CFD and Machine Learning.” SAE Techni-
cal Papers Vol. 2020-April (2020). DOI 10.4271/2020-01-
1313.

Mohan, Balaji, Tang, Meng, Badra, Jihad, Pei, Yuanjiang
and Traver, Michael. “Machine Learning and Response
Surface-Based Numerical Optimization of the Combustion
System for a Heavy-Duty Gasoline Compression Ignition
Engine.” SAE Technical Papers (2021)DOI 10.4271/2021-
01-0190.

Owoyele, Opeoluwa and Pal, Pinaki. “A novel ma-
chine learning-based optimization algorithm (ActivO)
for accelerating simulation-driven engine design.” Ap-
plied Energy Vol. 285 (2021): p. 116455. DOI
10.1016/J.APENERGY.2021.116455.

Posch, S., Winter, H., Zelenka, J., Pirker, G. and Wimmer,
A. “Development of a tool for the preliminary design of large
engine prechambers using machine learning approaches.”
Applied Thermal Engineering Vol. 191 (2021): p. 116774.
DOI 10.1016/J.APPLTHERMALENG.2021.116774.
Gharehghani, Ayat, Abbasi, Hamid Reza and Alizadeh,
Pouria. “Application of machine learning tools for con-
strained multi-objective optimization of an HCCI en-
gine.” Energy Vol. 233 (2021): p. 121106. DOI
10.1016/J. ENERGY.2021.121106.

Harris, Charles R., Millman, K. Jarrod, van der Walt,
Stéfan J., Gommers, Ralf, Virtanen, Pauli, Cournapeau,
David, Wieser, Eric, Taylor, Julian, Berg, Sebastian,
Smith, Nathaniel J., Kern, Robert, Picus, Matti, Hoyer,
Stephan, van Kerkwijk, Marten H., Brett, Matthew, Hal-
dane, Allan, del Rio, Jaime Fernandez, Wiebe, Mark, Pe-
terson, Pearu, Gérard-Marchant, Pierre, Sheppard, Kevin,

12

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Reddy, Tyler, Weckesser, Warren, Abbasi, Hameer, Gohlke,
Christoph and Oliphant, Travis E. “Array programming
with NumPy.” Nature Vol. 585 (2020): pp. 357-362. DOI
10.1038/S41586-020-2649-2.

Paszke, Adam, Gross, Sam, Massa, Francisco, Lerer, Adam,
Google, James Bradbury, Chanan, Gregory, Killeen, Trevor,
Lin, Zeming, Gimelshein, Natalia, Antiga, Luca, Desmai-
son, Alban, Xamla, Andreas Kopf, Yang, Edward, De-
vito, Zach, Nabla, Martin Raison, Tejani, Alykhan, Chil-
amkurthy, Sasank, Ai, Qure, Steiner, Benoit, Facebook,
Lu Fang, Facebook, Junjie Bai and Chintala, Soumith.
“PyTorch: An Imperative Style, High-Performance Deep
Learning Library.”: pp. 8024-8035. 2019. Curran Asso-
ciates, Inc.

Akiba, Takuya, Sano, Shotaro, Yanase, Toshihiko, Ohta,
Takeru and Koyama, Masanori. “Optuna: A Next-
generation Hyperparameter Optimization Framework.”
Proceedings of the ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining (2019):
pp- 2623-2631DOI 10.1145/3292500.3330701.
Rumelhart, David E., Hinton, Geoffrey E. and Williams,
Ronald J. “Learning representations by back-propagating
errors.” Nature 1986 323:6088 Vol. 323 (1986): pp. 533—
536. DOI 10.1038/323533a0.

Kingma, Diederik P. and Ba, Jimmy Lei. “Adam: A Method
for Stochastic Optimization.” 3rd International Confer-
ence on Learning Representations, ICLR 2015 - Conference
Track Proceedings (2014)DOI 10.48550/arxiv.1412.6980.
Nair, Vinod and Hinton, Geoffrey E. “Rectified Linear Units
Improve Restricted Boltzmann Machines.”: pp. 807-814.
2010.

Maas, Andrew L, Hannun, Awni Y and Ng, Andrew Y.
“Rectifier Nonlinearities Improve Neural Network Acoustic
Models.” Proceedings of the international conference on
machine learning Vol. 30 (2013).

Bergstra, James, Bardenet, Rémi, Bengio, Yoshua and Kégl,
Baldzs. “Algorithms for Hyper-Parameter Optimization.”
Advances in Neural Information Processing Systems Vol. 24
(2011).

Mhaskar, Hrushikesh, Liao, Qianli and Poggio, Tomaso.
“When and Why Are Deep Networks Better Than Shallow
Ones?” Proceedings of the AAAI Conference on Arti-
ficial Intelligence Vol. 31 (2017): pp. 2343-2349. DOI
10.1609/AAALV3111.10913.

Srivastava, Nitish, Hinton, Geoffrey, Krizhevsky, Alex and
Salakhutdinov, Ruslan. “Dropout: A Simple Way to Prevent
Neural Networks from Overfitting.” Journal of Machine
Learning Research Vol. 15 (2014): pp. 1929-1958.
McCartney, Michael, Haeringer, Matthias and Polifke,
Wolfgang. “Comparison of Machine Learning Algorithms
in the Interpolation and Extrapolation of Flame Describing
Functions.” Journal of Engineering for Gas Turbines and
Power Vol. 142 (2020). DOI 10.1115/1.4045516/1069492.

Copyright © 2023 by ASME

https://doi.org/10.1016/J.APENERGY.2019.04.126
https://doi.org/10.1115/1.4047978/1086007
https://doi.org/10.1016/J.JAECS.2022.100106
https://doi.org/10.4271/2020-01-1313
https://doi.org/10.4271/2020-01-1313
https://doi.org/10.4271/2021-01-0190
https://doi.org/10.4271/2021-01-0190
https://doi.org/10.1016/J.APENERGY.2021.116455
https://doi.org/10.1016/J.APPLTHERMALENG.2021.116774
https://doi.org/10.1016/J.ENERGY.2021.121106
https://doi.org/10.1038/S41586-020-2649-2
https://doi.org/10.1145/3292500.3330701
https://doi.org/10.1038/323533a0
https://doi.org/10.48550/arxiv.1412.6980
https://doi.org/10.1609/AAAI.V31I1.10913
https://doi.org/10.1115/1.4045516/1069492

	Abstract
	Nomenclature
	1 Introduction
	2 Methodology
	2.1 Experimental Setup and Procedure
	2.2 Computational Setup
	2.3 Model Architecture and Parameter Selection
	2.3.1 Loss Function and Evaluation Metrics
	2.3.2 Hyperparameters for Optimization

	2.4 Data Description
	2.5 Data Pre-Processing
	2.5.1 Feature Engineering
	2.5.2 Input Normalization
	2.5.3 Cylinder Pressure Filtering

	3 Results and Discussion
	3.1 Model Optimization
	3.1.1 Dropout Regularization

	3.2 Model Performance Results
	3.2.1 Model Performance Across Input Space

	4 Conclusions and Future Work
	Acknowledgments
	References
	APPENDICES

