DNA Nanoball Sequencing

Workflow:

- 1. Isolate DNA
- 2. Fragment DNA (400-500 bp)

3. Attach adapters & circularize fragments

4. Rolling circle replication

- amplifies coils of ssDNA to form a chain of copies of the fragment
- the chain is compacted into a DNA nanoball- folds on itself due to hybridizing palindromic sequences in adapters
- 5. Adsorption onto a silicon flow cell- a highly ordered microarray

Pros

- Highly accurate
- Low cost- can generate ~45-87 fold coverage at a consumables cost of \$4400/genome
- Nanoballs loaded in an organized array- high # of reads per flow cell

Cons

- Chemistry is complex and proprietary
- Short reads (35 base paired end)- complex data analysis, challenges with highly repetitive DNA
- Not optimized for a wide range of organisms

- 6. Sequencing using cPAL technology
- -Combinatorial probe-anchor unchained ligation
- Flourescent detection of each hybridization & ligation reaction

Probe for position 1- Subsequent probes will interrogate other

