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Using Next Generation Sequencing to Improve Aquaculture
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Aguaculture is one of the world’s fastest growing food-producing sectors and accounts for half of the
world’s food fish (FAO, 2015-2016 ). Recent advances in next generation sequencing has led to the ability
to produce massive quantities of sequencing data for non-model aquaculture species. Next generation
sequencing can be used to identify and characterize genes of commercial interests, such as those
regarding growth rates, reproduction, development, and disease resistance (Cerda & Manchado, 2013).
This information can be used for better management and to sustainability optimize production (Cerda &
Macnado, 2013). Und\Vy
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Less than 9% of current farmed aquaculture species have been subjected to

genetic Improvement programs (FAO, 2015-2016). The lack of a reference

genome and scarcity of transcriptome information has created challenges . ...
for whole genome sequencing. )

The state of the world’s aquatic genetic resources for food and agriculture ~
Conservation and sustainable use of aquatic genetic resources
Past, current, and planned exchange of aquatic genetic resources (FAO, 2015-2016)

Shifting from Sanger to Next Generation Sequencing

§De novo Genome Sequencing

Species Common Name No. of BAC NGS Application . . s .

P Chromosomes Platform w §Genetic Maps: identification of
Scophtalmus Turbot 22 ~40,000 454, solid RNA-seq, de quantltatlve tralt IOCI (Cerda and
maximus clones of novo genome ManChadO, 2013)

~125 kb sequencing .
Hippoglossus Atlantic Halibut 24 35,328 454 De novo §Slmp|e Seq uence Repeat Markers or
hippoglossus clones of genome . . .

100 kb sequencing microsatellites: reveal genetic
Solea Senegalese Sole 21 29,184 454, 1llumina  RNA-seq, de . . . .
senegalensis clones of novo genome varia blllty, strain and species

100-300 kb sequencing . o .
Solea solea Common Sole 21 NMumina RNA |dent|ﬁcat|0n, and parentage

sequencing

Modified from Cerda and Manchado, 2013 (SU ndaray et. al; 2016)

DNA source
Genomic, transcriptome, cDNA

§miRNAs in the genome by transcriptome analysis with processes

affecting development, metabolism, and disease (Rasal et. al, 2016) SSRenrichment_| [Nt genrnion soqening
. [} on Toment PacBio)

§Expressed Sequence Tag to study gene expression (Zhang et. al e R
2012) ((.Iomn‘g E.coli)
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Plasmid DNA isolation

Mapped reads
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