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Abstract
As climate change disrupts fisheries, scientists are interested in fisheries projections under climate change scenarios. How-

ever, projections that account for spatial oceanographic gradients use increased variable selection power and output high spa-
tial resolution climate data are needed to improve strategic fisheries management. This study uses the least absolute squares
and selection operator, a regularization technique, and improved, climate change projections from phase 6 of the Couple
Model Intercomparison Project to relate Atlantic surfclam, Spisula solidissima solidissima, recruitment to climate variables. Re-
sults show a longitudinal gradient in New York State waters where western recruitment displays a negative relationship with
sea surface temperature and eastern recruitment displays a negative relationship with eastward spring wind intensity. Models
project that recruitment in 2050 will decrease 100% in western waters and remain sporadic, but high, in eastern waters. This
study provides insight regarding surfclam responses to climate change and considerations (methodological and statistical) for
improved climate-based fisheries projections.
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1. Introduction
As greenhouse gas emissions continue to alter the climate,

there is a growing need to better understand the impact
of climate change on fisheries. Time series analyses are fre-
quently used to link interannual fisheries production (e.g.,
recruitment and stock size) to environmental variables such
as sea surface temperature (SST) and climate indices (e.g., El
Niño/Southern Oscillation Index) (Tian et al. 2003; Deyle et
al. 2013; Bartolino et al. 2014; Miller et al. 2016). By establish-
ing relationships between climate variables and fisheries pro-
duction, it is then possible to project future production from
climate model projections. While great progress has been
made in climate-based fisheries projections, more precise
and less biased projections are needed. Multidecade, climate-
based projections are rarely used in tactical fisheries man-
agement, but improved strategic fisheries management
stemming from more accurate climate-based projections can
provide realistic expectations of stock trends through time
under variable climate conditions (Myers 1998; Punt et al.
2014; Bell et al. 2018). Punt et al. (2014) identified directly
linking fisheries production to Intergovernmental Panel on
Climate Change (IPCC) models as a key factor when attempt-

ing fisheries projections in response to climate variables
(termed the “mechanistic” approach in the context of us-
ing climate variation to aid fisheries management). Subse-
quently, recent work has incorporated climate projections
in fisheries production models (Lehodey et al. 2013, 2015;
Szuwalski et al. 2021). However, studies that have attempted
projections may be limited by coarse climate projections that
lack proper spatial resolution (Rheuban et al. 2017; Le Bris et
al. 2018), and region-specific ocean climate change impacts
(Brander 2010). New phase 6 Couple Model Intercomparison
Project (CMIP6) Global Climate Model (GCM) output contains
projections that are less biased (Séférian et al. 2020; Wang and
Wang 2020) and more spatially resolute (Koenigk et al. 2020)
than that of CMIP5, thereby potentially improving fisheries
projections. For example, increased GCM resolution of 10 km
has significantly decreased Spring SST bias in northwest At-
lantic shelf waters (with zero bias in inner shelf waters in the
Gulf of Maine and southern New England) (Saba et al. 2016).
Only recently have CMIP6 GCM output been used in fisheries
projections (Fauchald et al. 2021; Koul et al. 2021; Testa et
al. 2022). Additionally, while previous fisheries models often
include atmospheric forcing climate indices (e.g., ENSO and
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NAO) (Brunel and Boucher 2007; Caputi et al. 2010; Muhling
et al. 2018), models rarely include direct measures of wind
in projections, which have been shown to explain interan-
nual recruitment variation (Churchill et al. 2011; Hare et al.
2015; Skagseth et al. 2015) potentially due to larval transport
and food supply mechanisms (Nakata et al. 2000; Vikebø et
al. 2019). Although these indirect mechanisms are specula-
tive, other studies have identified a need to include more fine-
scale and specific predictors (e.g., individual wind vectors as
opposed to climate indices) to improve precision, bias, and
utility of projections (Brosset et al. 2020).

When working with a high number of predictor variables
(e.g., SST and wind during multiple seasons), variable selec-
tion can be difficult. It is typical to construct models with
all possible combinations of predictor variables and com-
pare them using metrics such as Akaike information criterion
(AIC) or AIC weights. However, this time-consuming approach
can lead to the construction and comparison of over 100 mod-
els when just 12 predictor variables are used (A’mar et al.
2009). While functions such as the “dredge” function in R can
help automate this process, as the function name implies,
this approach is often criticized as data dredging (Anderson
and Burnham 2004). Additionally, collinearity poses another
issue when working with many predictor variables and has
also been identified as an area of needed improvement in
projecting fisheries recruitment from environmental factors
(Myers 1998). Classic variable selection techniques such as
stepwise regression aid in reducing the number of variables
in the best-fit model but may yield other issues including pa-
rameter estimation bias, model selection algorithm inconsis-
tencies, overfitting, and not utilizing the entire model space
(Whittingham et al. 2006; Hegyi and Garamszegi 2011). Reg-
ularization techniques such as least absolute shrinkage and
selection operator (LASSO) may not only solve the previously
mentioned issues but also automate variable selection in one
analysis and yield less prediction error than approaches such
as stepwise regression (Kumar et al. 2019). Regularization dif-
fers from typical variable selection approaches in that it adds
a shrinkage term to the model (Hastie et al. 2009). LASSO
regularization differs from other regularization techniques
(e.g., ridge regression) in that it attempts to shrink variable
coefficients to zero (Tibshirani 1996) (i.e., ridge regulariza-
tion retains all variables since coefficients are not shrunk to
zero but LASSO removes unnecessary variables that yield co-
efficients that may be shrunk to zero). Furthermore, regular-
ization techniques such as LASSO may account for collinear-
ity among predictor variables and sample the whole model
space, increasing their utility in fisheries ecology which of-
ten yields situations with a high total number of variables
and many collinear variables (Tibshirani 1996; Hastie et al.
2009; Gownaris et al. 2018; Plumpton 2018). LASSO is com-
mon in medical (Kidd et al. 2018; McEligot et al. 2020) and
bioinformatics (Li et al. 2011; Lu et al. 2011) literature, but
has yet to be applied to fisheries projections.

The Atlantic surfclam, Spisula solidissima solidissima, is
among many fisheries in the northwest Atlantic that have
been shown to be negatively impacted by climate change.
Surfclams are large (upto 30 cm long) (Weinberg 1999) bi-
valves found in soft-sediment, inner-shelf waters (10–50 m)

and are distributed between the Gulf of St. Lawrence and
Cape Hatteras (Wigley and Emery 1968) where they
support a multimillion dollar industry. In many areas,
including New York State (NYS) waters, populations have
experienced large (>70%) declines in recent decades (Dahl
and Hornstein 2010; O’Dwyer and Hornstein 2013). Fishing
mortality is well beneath overfishing thresholds (NEFSC
2017). However, increased temperature has been linked to
distributional shifts to cooler waters (Weinberg 2005), low
condition indices (Marzec et al. 2010), low assimilation rates
(Narváez et al. 2015), low scope for growth (Hornstein et
al. 2018), low growth rates (Munroe et al. 2016), and gonad
abnormalities (Kim and Powell 2004). O’Dwyer and Horn-
stein (2013) demonstrated a sharp decrease in prerecruit
surfclams (i.e., individuals that had not yet recruited to the
fishery) from 2002 to 2012, suggesting recruitment failure
may also be contributing to population declines. Surfclam
recruitment and larvae settlement are notoriously patchy in
time and space and are thought to be influenced by abiotic
(hydrodynamics, wind, and temperature) and biotic factors
(predation and food availability) (Chintala and Grassle 2001;
Ma and Grassle 2004; Ma 2005; Ma et al. 2006). Better under-
standing the impact of these factors on surfclam recruitment
is particularly important for projecting recruitment, as cli-
mate change continues to increase coastal SST, alter wind
and current patterns (Harley et al. 2006), and affect bivalve
food availability (Boyce et al. 2010; Winder and Sommer
2012).

In NYS waters (representing close to the mean latitude
within surfclam distribution) mean summer SST of surfclam
habitat has increased over 2 ◦C from the late 1980s to the
late 2010s (NOAA Buoy 44025). Mean summer SST now reg-
ularly exceeds 23 ◦C, a known physiological thermal thresh-
old for surfclams (Kim and Powell 2004; Narváez et al. 2015;
Hornstein et al. 2018), thereby providing a mechanism by
which SST may be negatively affecting recruitment. Estab-
lishing a mechanistic basis for models that link climate vari-
ables to fisheries recruitment has not only proven vital for
improved tactical management (Guisan and Zimmermann
2000; Dickey-Collas et al. 2014; Maunder and Thorson 2019),
but may yield relationships that are more likely to hold
up through time, thereby also improving strategic manage-
ment. Therefore, the NYS surfclam fishery represents an ideal
case to study climate–recruitment relationships. Addition-
ally, spatial oceanographic gradients (e.g., warmer, higher
chlorophyll waters in the west and cooler, lower chlorophyll
waters in the east) (O’Reilly and Zetlin 1998) in NYS waters
suggest potential spatial variation in climate–recruitment re-
lationships. Accounting for spatial oceanographic gradients
in climate–recruitment relationships is not always imple-
mented (Keyl and Wolff 2008), but when accomplished, has
revealed important relationships that change in space and in-
crease predictive power (Wolff and Vargas 1994; Planque and
Frédou 1999).

In a review of fisheries environment–recruitment relation-
ship studies, Myers (1998) emphasizes multiple approaches
to improve the field including testing general hypotheses
that function more than a simple case study. In the present
study, the general hypotheses of (1) the presence of spatial
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gradients in recruitment–climate relationships, (2) a negative
SST–recruitment relationship due to thermal stress, and (3)
the presence of wind–recruitment relationships due to poten-
tial wind influence on larval transport or food availability are
tested. While testing these hypotheses may not yield informa-
tion for immediate use in tactical management, unraveling
these relationships may lead to improved strategic manage-
ment. Surfclams are used here as a model species; however,
these general hypotheses can be applied to other temper-
ate, coastal fisheries. Increasing SST patterns, spatial oceano-
graphic gradients, and a declining fishery create a need to
unravel climate-recruitment relationships and to project fu-
ture recruitment for surfclams. This need presents an ideal
opportunity to apply LASSO and updated CMIP6 GCM output
for fisheries projections. The objectives of the present study
were to (1) establish temporal and spatial recruitment trends
in the NYS surfclam fishery, (2) determine which climate vari-
ables significantly impact surfclam recruitment using LASSO,
and (3) create projection models using CMIP6 GCM output.

2. Methods

2.1. Recruitment estimates
Surfclam population data were obtained from the New

York State Department of Environmental Conservation sur-
veys from 1999, 2002, 2005, 2006, 2008, and 2012. Data
from previous surveys were available but were omitted,
as earlier surveys were conducted without a dredge mesh
liner to capture smaller sized clams. Survey method de-
tails can be found in Dahl and Hornstein (2010). In short,
a hydraulic dredge was used to catch adult surfclams from
238 randomly selected stations per survey in a stratified
sampling design within NY state waters between Rock-
away Inlet (40◦34′55.0′′N, 73◦45′18.0′′W) and Montauk Point
(41◦04′13.0′′N, 71◦51′20.2′′W). Catch per unit effort (CPUE)
were reported in bushels and specified for age classes. Ages
were estimated by counting annual growth lines from chon-
drophore cross-sections. CPUE for each age class was cor-
rected for mortality as follows:

Mortality Adjusted CPUE = CPUE
(

1
e(−0.15 ∗ X )

)

where X is the number of years past recruitment for that co-
hort. A mortality value of 0.15 year−1 was chosen as a stock
standard mortality value (NEFSC 2017). Mortality was initially
estimated via catch–curve analyses; however, unreasonable
mortality values suggested that the data may be too noisy
to allow direct mortality estimation. CPUE data (for each age
class) were explored via a bubble plot to help gauge general
temporal and spatial trends in biomass.

Young of the year estimates were not provided from
surveys and multiple year gaps existed between surveys;
therefore, direct estimates of annual recruitment were un-
available. Instead, a mean cohort strength index (CSI) was de-
veloped as a relative proxy for annual recruitment. CSI values
are not intended as an absolute measure of recruitment, but
are presented to allow comparison of recruitment strength

between years, such that a positive CSI value represents a
(birth) year with above average recruitment and a negative
CSI value represents a year with below average recruitment.
Due to low catchability and aging inaccuracy for young clams,
clams younger than 4 years were not used in analyses. CSI val-
ues were calculated as follows:

CSIt,i = CPUEt,i − μi

σi

where CPUE is mortality-adjusted CPUE, μ is mean catch, σ is
catch standard deviation, t is year of birth, and i is survey year.
Therefore, each year class yielded multiple CSI values based
on the number of surveys that captured that year class. For ex-
ample, the 1994 year class was captured by six surveys yield-
ing six CSI values, and the 2004 year class was captured by
two surveys yielding two CSI values. The mean CSI value for
each year class was calculated and used as a relative proxy for
recruitment for a given year class. Year classes with less than
two CSI estimates were not included in analyses due to uncer-
tainty associated with only one CSI value and CSI estimates
from individuals older than 20 years old were not included
due to senescence mortality, yielding n = 18 from 1987 to
2004. Survey catch data are typically reported within four
longitudinal strata: Rockaway Inlet to Jones Inlet (RJ), Jones
Inlet to Fire Island Inlet (JF), Fire Island Inlet to Moriches In-
let (FM), and Moriches Inlet to Montauk Point (MM) (see Dahl
and Hornstein (2010) for precise, visual displays of strata
locations). CSI values were initially calculated for each lon-
gitudinal stratum but a Spearman correlation revealed a sig-
nificant correlation between RJ and JF CSI values (p = 0.0086).
Therefore, catch data for RJ and JF were combined for CSI cal-
culations, yielding CSI values for three different longitudinal
regions (Fig. 1).

2.2. Variable selection
To obtain SST values for each region, SST daily data were

downloaded from the Group for High-Resolution Sea Sur-
face Temperature (GHRSST) database (https://www.ncei.noa
a.gov/thredds-ocean/catalog/ghrsst/L4/catalog.html) and aver-
aged into monthly bins. These data are produced on a 0.25◦

grid and represent temperature from the surface to 10 m.
For each region, the grid point closest to the region center
was chosen for region-specific SST values (Fig. 1). Wind data
were obtained from the National Data Buoy Center (NDBC)
buoys and C-MAN stations. Data were obtained from NDBC
Buoy 44025 and when data were missing, data were taken
from Ambrose Light Tower, Buoy 44065, and Buoy 44017.
Unlike SST, which included region-specific data, wind data
from NOAA buoys were applied to all three regions uni-
formly. Mean seasonal SST, east–west wind components (U),
and north–south wind components (V) were calculated as fol-
lows: Winter is the mean of January 1st to March 31st; Spring
is the mean of April 1st to June 30th; Summer is the mean
of July 1st to September 30th; and Fall is the mean of Oc-
tober 1st to December 31st. Seasonal SST and wind com-
ponent anomalies were then calculated (as deviations from
seasonal means from 1987 to 2004) and used for variable se-
lection and model construction. U and V wind components
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Fig. 1. Three longitudinal regions, each with independent annual surfclam cohort strength index (CSI) trends, in New York
State waters. Black stars represent locations for region-specific SST data. This map (projected coordinate system) was created
via shoreline data from the Global Self-consistent, Hierarchical, High-resolution Geography Database (https://www.soest.hawa
ii.edu/pwessel/gshhg/) using the R package “rnaturalearthhires” v0.2.0.

were calculated by multiplying the sine and cosine, respec-
tively, of wind direction (radians) by wind speed (m·s−1).
Therefore, a positive U value represents an eastward wind,
a negative U value represents a westward wind, a positive V
represents a northward wind, and a negative V represents a
southward wind.

LASSO was used for preliminary variable selection in model
construction. In MATLAB, the “lasso” command (maximum
likelihood estimation) was used such that retained variables
had nonzero coefficients associated with the lambda (cut-
off) value that resulted in the lowest mean squared error
(LMSE) after leave-one-out cross-validation (LOOCV). In other
words, the lambda at the LMSE was the chosen lambda. This
approach has proven successful with preventing overfitting
with small data sets, as is the case in the present study
(Dahlgren 2010), as all lambda values up to 100 are explored,
and the higher the lambda, the greater the penalty. For a
given lambda, LASSO estimates variable coefficients by solv-
ing for the equation (matrix notation):

Lasso MSE = min
β0β

(
1

2 N

N∑
i=1

(
yi − β0 − xT

i β
))2

+ λ

p∑
j=1

∣∣β j
∣∣

where β and β0 are the regression coefficients of scalar length
p, N is the number of observations, y is the response variable
at observation i, x is the predictor variable of vector length
p and at observation i, and λ is shrinkage penalty parame-
ter. To account for the possibility that mean CSI values may
lack precision, in terms of estimating annual recruitment,
weights were applied to CSI values for LASSO. CSI weights
were calculated as the number of surveys that capture a par-
ticular year class. This approach gives more weight to CSI
means that were calculated from a higher number of sur-
veys, thereby removing predictor variables that may other-
wise be retained due to spurious correlation with noisy CSI
values. Variables retained by LASSO were then used in the sec-
ond step of model construction where CSI weights were also
applied.

2.3. Model construction and selection
Following LASSO variable selection, multiple candidate

models were constructed for each region such that CSI val-
ues were predicted as a linear function of different subsets
of LASSO selected variables. Backward stepwise selection was
used to remove LASSO selected variables to create parsimo-
nious subsets of variables such that for each region the first
subset included all LASSO selected variables and the last sub-
set included the last remaining variable. This approach gen-
erated one candidate model for Region 1, four candidate
models for Region 2, and three candidate models for Region
3. Generalized additive models (GAMs) were also explored,
but were ultimately excluded from model selection for nu-
merous reasons (see the supplementary material for further
discussion).

To select the best candidate model for regional projections
given the data, AIC values, residual standard errors (RSEs),
and R-Squared values of original models and LOOCV anal-
yses were calculated and assessed. LOOCV procedures have
been shown to provide unbiased estimates of model predic-
tion accuracy, even at small sample sizes (Olden and Jackson
2000). For LOOCV analyses, one observation was left out of
the data set to obtain a training model of n = 17. The miss-
ing observation was then predicted from that model. This
was repeated for each observation. As the primary assess-
ment for model selection, the LOOCV R-Squared value trends
were analyzed. More specifically, as the number of predic-
tor variables increased, the LOOCV R-Squared value trend
was analyzed to see whether the LOOCV R-Squared value
continued to increase as the number of predictor variables
increased (i.e., at which model did LOOCV R-Squared value
peak) (Flanagan and Cerrato 2015). The candidate model that
yielded the highest LOOCV R-Squared value is suggested to
yield the highest prediction accuracy. However, because the
trend (i.e., peak) of LOOCV R-Squared values was unclear
for Region 3 (see the “Results” section), a second assess-
ment for model selection was also considered. For the sec-
ond assessment, the % difference in RSEs between the original
model-fitted values and the fitted values of the LOOCV model
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(hereafter referred to as RSE % difference) was then assessed,
such that a smaller RSE % difference means higher prediction
accuracy of the original model. Model assumptions and di-
agnostics were inspected when appropriate. Model construc-
tion and assessments were conducted in R Version 4.0.2
using base packages, the “mgcv” package (R Core Team 2020),
“caret” package (Kuhn 2008), and the “SardineForecast” pack-
age (Holmes 2020). Maps were created in R Version 4.0.2 using
the “rnaturalearthhires” package (South 2023) and GSHHG
shapefile data (Wessel and Smith 2017) and in MATLAB using
the “M_Map” package (Pawlowicz 2020).

2.4. Projections
Projecting of CSI values was conducted across two time pe-

riods: (1) from 2005 to 2019, when observational data were
available and (2) from 2020 to 2050, when GCM data were in-
corporated. For the first part SST (GHRSST) and wind (buoy)
data were imported as previously described into the selected
models for each region as predictor variables. For the second
part, GCM output from CMIP6 simulations were used. This
new generation of GCM simulations not only allowed for cli-
mate output at higher resolutions but also decreased GCM
bias (see the “Discussion” section for appropriate GCM con-
text). The simulations used in the present study included
Socioeconomic Pathway 5 (SSP5), which is close to the Repre-
sentative Concentration Pathway 8.5 (RCP 8.5). An SSP5 sce-
nario assumes no mitigation (Riahi et al. 2011) and increasing
gas emissions overtime under projected global population
growth (IPCC 2014). GCM output was obtained online via the
CMIP6 data portal (https://esgf -node.llnl.gov/search/cmip6/).
For SST projections (identified as tos in GCMs), output from
five GCMs were used. These GCMs were chosen because they
meet our spatial resolution requirements (≤25 km). Addi-
tionally, these GCMs have been previously used for eco-
logical projections and/or their tos output for the north
Atlantic had been assessed by previous climate studies (Table
S1). Wind projections, (with standard GCM variable names
uas and vas for east and north component, respectively) out-
put were used from three GCMs. These GCMs were chosen
as they were the only available GCMs (with uas and vas out-
put) that met spatial resolution requirements (≤25 km) (Table
S1). For each GCM, values were selected at a grid point that
was nearest to the center of each region. GCM output were
calibrated (from 1987 to 2014) for each region using the bias
correction method (Ho et al. 2012). For each output variable,
bias corrected values were averaged across all GCMs. These
data were then imported as previously described into the se-
lected models for each region as predictor variables.

Additionally, to visualize GCM projections relative to
present day, SST and wind vectors during seasons of in-
terest were averaged from 2015 to 2024 and 2041 to 2050
and displayed and compared via maps (Figs. S1 and S2).
For maps, SST projections from the NCAR.CESM1-CAM5-SE-
HR model and wind projections from the CAS.FGOALS-f3-
H were used as these GCMs contained the highest resolu-
tion and produced values close to the average of all GCMs
used.

Fig. 2. Winter (A), spring (B), summer (C), and fall (D) sea sur-
face temperature data (obtained from the Group for High-
Resolution Sea Surface Temperature) for three longitudinal
regions (with Region 1 being the western most region and
Region 3 being the eastern most region) from 1987 to 2019.

3. Results

3.1. Climate variables
Seasonal SSTs generally increased from 1987 to 2019

(Fig. 2). For example, mean Spring and Summer SST (Region
1) of the first decade (i.e., 1987–1996) and the last decade (i.e.,
2010–2019) increased 1.3 and 1.5 ◦C, respectively (Figs. 2B and
2C). During years for which observed CSI values are available,
particularly warm years occurred in 1995 and 1999 (Fig. 2).
During years for which CSI values were projected, partic-
ularly warm years occurred in 2012 and 2016 (Fig. 2). The
summer east component of wind, SummerU generally de-
creased from 1987 to 2019, but no directional patterns were
observed for other seasonal Us (Fig. 3). Most years for all sea-
sons resulted in positive Us (i.e., winds blowing to the east)
(Fig. 3). WinterU and FallU averages were never negative, but
SpringU and SummerU were occasionally negative, such as
in 1992 and 2009 (Fig. 3). No directional changes were ob-
served for seasonal north component Vs from 1987 to 2019
(Fig. 3). SpringV and SummerV were generally positive (i.e.,
winds blowing to the north); however, occasional negative
SpringVs occurred, such as in 1991 and 2003 (Fig. 3). Win-
terV and FallV were generally negative (i.e., winds blowing
to the south); however, occasional positive WinterVs and Fal-
lVs were experienced, such as in 1997 and 2001, respectively
(Fig. 3).

3.2. Catch data
Catch data not only displayed decreasing CPUE through

time but also showed sporadic changes in CPUE between age
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Fig. 3. U wind component (A) and V wind component (B) from
NOAA buoys near New York State waters from 1987 to 2019.

classes, suggesting episodic recruitment (Fig. 4). CPUE in Re-
gions 1 and 2 was generally greater than that in Region 3, as
suggested by the larger bubbles and larger bubble scaling fac-
tors in Regions 1 and 2 (Fig. 4). Bubble plots suggested that the
data performed adequately in terms of tracking large cohorts
through time. For example, in Region 2, relative to other co-
horts within each survey year, the age 7 year class of 1999, age
10 year class of 2002, age 13 year class of 2005, and age 14 year
class of 2006 were relatively large (Fig. 4). Furthermore, CPUE
for that age class appeared to be slightly decreasing through
time, suggesting detectable mortality (Fig. 4).

3.3. Observed CSI patterns and LASSO results
All three regions began the time series with positive CSI

values, suggesting an above average recruitment year (Fig. 5).
Region 1 experienced generally decreasing CSI values until
2004, with the exception of a CSI spike from 1995 to 1997
(Fig. 5A). Region 2 also experienced generally decreasing CSI
values, with the exception of a CSI spike in 1992 (Fig. 5B). Re-
gion 3 also experienced a CSI spike in 1992, but it experienced
generally increasing CSI values after 1998 (Fig. 5C). CSI confi-
dence intervals for Region 3 appear wider than Regions 1 and
2 (Fig. 5), likely because Region 3 experienced lower surfclam
abundances and catches (Fig. 4). LASSO retained one predictor
variable for Region 1, zero predictor variables for Region 2,
and three variables for Region 3 (Table 1). A temperature vari-
able was only retained for Region 1, which yielded a negative
relationship with CSI values (Table 2). Wind variables were
only retained for Region 3, all of which yield negative rela-
tionships with CSI values (Table 2). LASSO yielded an oceano-
graphic gradient where temperature variables were more
important in the west (e.g., Region 1) than the east (e.g., Re-
gion 3) and wind variables were more important in the east
than the west. Furthermore, LASSO yielded no positive rela-
tionships between temperature variables and CSI values in

any region and yielded positive relationships with eastward
winds in the western regions during the spawning season
(Spring and Summer). Because LASSO did not retain any vari-
ables for Region 2 (see the “Discussion” section for more ex-
planation), the last four variables to be eliminated by LASSO
were used to create candidate models, including FallT, FallV,
WinterV, and SummerU (Table 3). Therefore, Region 2 over-
laps with Region 1 in that FallT was included in candidate
models, and Region 2 overlaps with Region 3 in that WinterV
and spawning season U winds (SummerU and SpringU) were
included in candidate models (Tables 3).

3.4. Region 1 model selection and projections
For Region 1, only one variable (FallT) was retained by

LASSO; therefore, only one candidate model was considered
for Region 1 (Table 3). Both the Model R-Squared and RSE
% differences were relatively low. While the low Model R-
Squared suggests poor explanatory power, the low RSE % dif-
ference suggests adequate predictive power (see the “Model
construction and selection” section for discussion and hier-
archy of model selection measures). Diagnostics for Model
1 did not display strong evidence for departures from nor-
mality and linearity and yielded no Cook’s distance values
greater than 1.0 (Fig. S3). Unsurprisingly, Part 1 and Part 2
projections yielded consistently negative and declining CSI
values (Fig. 6A), due to increasing FallT trends, as FallT pro-
jections yielded increases of ∼1.5 ◦C between the beginning
and end of Part 2 projections (Fig. S1). While model uncer-
tainty is noticeably higher after 2030, confidence intervals
rarely extend above zero, suggesting reliable projections of
low recruitment (Fig. 6A). A notable drop in projected CSI
values was observed in 2040, due to GCM projections of an
anonymously warm year (Fig. 6A). From 2041 to 2050, Part 2
projections yielded a mean CSI value of approximately −1.14,
corresponding with a 100% decrease in CPUE relative to the
average of all the observed values.

3.5. Region 2 model selection and projections
Parsimonious subsetting yielded four candidate models for

Region 2 (Table 3). Linear model coefficients for each vari-
able from the least parsimonious model are as follows: Sum-
merU = 0.342, WinterV = −0.230, FallV = −0.157, and FallT
= −0.245. All four models yielded relatively high R-Squared
values and AIC values that never differed by more than 2.0
(Table 3). The LOOCV R-Squared value peaked for Model 2
(i.e., with three predictor variables) and declined at Model 1
(i.e., with all four predictor variables), suggesting the highest
predictive accuracy for Model 2 (Table 3). Therefore, Model 2
was chosen for projections (Table 3). It should be noted that
while the primary assessment of prediction accuracy (i.e., the
LOOCV R-Squared trends) suggested highest predictive accu-
racy for Model 2, the RSE % difference (i.e., the secondary as-
sessment of prediction accuracy) was the lowest for Model
4 (Table 3). Similar to Region 1, the model with the highest
predictive accuracy (Model 2) included FallT (Table 3). Model 2
also included SummerU and WinterV. Diagnostics again did
not display strong evidence for departures from normality
and linearity and yielded no Cook’s distance values greater
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Fig. 4. Bubble plot displaying catch per unit effort (CPUE) of individual cohorts from each survey for Region 1 (A), Region 2 (B),
and Region 3 (C). Legends display region-specific scaling factors for bubble sizes and minimum, median, and maximum CPUE.

than 1.0 (Fig. S4). Also, similar to Region 1, Part 1 CSI pro-
jections yielded generally decreasing CSI values and Part 2
projections yielded consistently negative and declining CSI
values (Fig. 6B) due to increasing FallT trends (Fig. 6B). Both
projection parts yielded sporadic CSI spikes during years with
cool Falls, strong Summer winds from the west, and strong
Winter winds from north (Fig. 6B). Model uncertainty is again
noticeably higher after 2030 (Fig. 6B). However, unlike Re-
gion 1, confidence intervals for Region 2 occasionally extend
above zero, suggesting potential high recruitment during
years with strong Summer winds from the west and strong
Winter winds from north (Fig. 6). From 2041 to 2050, Part 2
projections yielded a mean CSI value of approximately −1.54,
corresponding with a 100% decrease in CPUE relative to the
average of all the observed values.

3.6. Region 3 model selection and projections
Parsimonious subsetting yielded three candidate models

for Region 3 (Table 3). The least parsimonious model (i.e.,
Model 1) yielded a relatively high Model R-Squared value, but
the most parsimonious model yielded a relatively low Model

R-Squared value (Table 3). All three models yielded AIC values
that never differed by more than 1.5 (Table 3). The LOOCV R-
Squared value decreased when one predictor variable was re-
moved but then increased when two predictor variables were
removed (i.e., Model 2 has the lowest LOOCV R-Squared but
Model 3 has the highest LOOCV R-Squared) (Table 3). The un-
clear LOOCV R-Squared trend allowed for precedence of RSE
% difference assessment in choosing the best model for pro-
jections (Table 3). Model 3, the most parsimonious model,
had the lowest RSE % difference, suggesting the greatest pre-
dictive accuracy (Table 3). Therefore, Model 3, which only
included SpringU, was chosen for projections (Table 3). For
Model 3, diagnostics again did not display strong evidence
for departures from normality and linearity and yielded no
Cook’s distance values greater than 1.0 (Fig. S5). Part 1 pro-
jections yield sporadic CSI values with minor spikes but Part
2 projections yield consistently positive CSI values with great
spikes (Fig. 6C), due to SpringU winds that fluctuated but
gradually became more negative (Fig. S2). Model uncertainty
was considerably lower for Region 3 than Regions 1 and 2
(Fig. 6). From 2041 to 2050, Part 2 projections yield a mean
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Fig. 5. Observed annual cohort strength index (CSI) trends
for Region 1 (A), Region 2 (B), and Region 3 (C) from 1987 to
2004. Shaded regions represent 95% confidence intervals.

Table 1. Least absolute shrinkage and selection operator
output for each region.

Region Variables retained Lambda LMSE

1 FallT 0.3442 97

2 N/A 0.4942 100

3 SpringU, WinterV, SummerV 0.1306 87

Note: Variables retained had nonzero coefficients at the lambda value as-
sociated with the lowest mean squared error (LMSE).

CSI value of approximately 0.32, corresponding with a 2% in-
crease in CPUE relative to the average of all the observed val-
ues.

4. Discussion

4.1. General model performance
These results demonstrate that LASSO can prove a valu-

able tool in constructing models that project fisheries met-
rics in response to climate change and nonanthropogenic
environmental variability. Additional variable subsetting was
needed after LASSO, and LASSO did not retain variables for
Region 2 (see the next paragraph). However, LASSO helped
to unravel region-specific relationships between surfclam re-
cruitment and climate variables that are likely due to spatial

gradients in oceanographic conditions. These relationships
suggest that ocean warming is driving recruitment failure
in western NYS waters and that Winter and spawning sea-
son (i.e., Spring and Summer) wind patterns drive episodic
recruitment in eastern NYS waters.

Interestingly, LASSO did not retain any variables for Re-
gion 2. One potential reason is that Region 2 is more
ecologically complicated than Regions 1 and 3, and there-
fore, a low sample size prevented LASSO from unraveling
recruitment–environmental relationships. In other words,
results suggest a spatial oceanographic gradient where Re-
gion 1 is more influenced by temperature and Region 3 is
more influenced by wind. Therefore, Region 2 may repre-
sent a “hybrid” zone where both temperature and wind af-
fect recruitment depending on the year. Because only 18
years were analyzed, LASSO was unable to tease apart such
relationships.

While LASSO may have struggled with variable selection
for Region 2, LASSO likely limited overfitting. Overfitting is
not only a concern for fisheries-climate models, but is a par-
ticular concern in ecological studies with low sample sizes
(Fox et al. 2015). While the present study fits into both cat-
egories, it is believed for numerous reasons, that overfitting
risk was minimized and model performance was maximized
in the present study. Not only did LASSO successfully reduce
the number of variables for model construction considera-
tion, but LASSO has previously been documented to reduce
overfitting by providing more parsimonious variable selec-
tion, more specifically by reducing variance at the tradeoff
of introducing bias (via the lambda value). GAMs also have
been identified as a source of overfitting, as they may yield
overly complex relationships (Wood and Augustin 2002). The
model accuracy assessments employed in the present study
indeed suggested possible GAM overfitting, thus causing lin-
ear models to be chosen for projections. Coupling LASSO with
the employed model accuracy assessments that were based
on resampling prediction scores (e.g., LOOCV procedures)
has also previously been documented as an approach that
minimizes overfitting (Stockwell and Peterson 2002; McNeish
2015). Therefore, minimized overfitting risks increase confi-
dence of model performance. Furthermore, all the variables
retained in the models chosen for projections contain possi-
ble mechanistic, ecological links to recruitment (see the next
paragraphs). Not all studies that attempt to project fisheries
production in response to climate variables identify clear
links (Myers 1998). However, it is believed that by establish-
ing distinct links that account for spatial variability (i.e., dif-
ferent links in different regions that correspond with spatial
oceanographic gradients), the models in the present study
may yield enhanced model performance. More specifically,
accounting for a spatial gradient where one area may yield
strong, negative relationships between the climate variable
(e.g., SST) and fisheries production because that area is at the
end of an environmental gradient (e.g., higher SST), but an-
other area may yield no relationships between the climate
variable and fisheries production because that area is in the
middle of an environmental gradient, has been proposed to
increase performance and limit the breakdown of such rela-
tionships
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Table 2. Correlation coefficients of least absolute shrinkage and selection operator retained
variables for each region.

Region 1 Region 2 Region 3

Variables retained Coefficient Variables retained Coefficient Variables retained Coefficient

FallT −0.1730 N/A N/A SpringU −0.1698

WinterV −0.1824

SummerV −0.1033

Table 3. Goodness of fit and prediction accuracy assessments for all candidate models including degrees of freedom (df), Akaike
information criterion (AIC), leave-one-out cross-validation (LOOCV), and residual standard error (RSE) analyses.

Model Variables df AIC
ModelR-
squared

LOOCVR-
squared ModelRSE LOOCVRSE

RSE
%difference

Region 1

Model 1∗ FallT 16 47.661 0.269 0.130 0.775 0.901 16.25

Region 2

Model 1 SummerU, WinterV, FallV, FallT 13 47.717 0.472 0.154 0.702 0.975 38.98

Model 2∗ SummerU, WinterV, FallT 14 46.193 0.458 0.180 0.690 0.906 31.37

Model 3 SummerU, WinterV 15 45.679 0.412 0.169 0.693 0.872 25.92

Model 4 SummerU 16 46.267 0.320 0.164 0.734 0.831 12.85

Region 3

Model 1 SpringU, WinterV, SummerV 14 37.992 0.5104 0.1659 0.612 0.840 37.10

Model 2 SpringU, WinterV 15 37.649 0.4632 0.1449 0.635 0.805 26.77

Model 3∗ SpringU 16 39.069 0.3569 0.1909 0.639 0.725 13.47

∗Denotes the model chosen for projections for each region.

4.2. Biogeographic patterns and mechanisms
Oceanographic gradients along the south shore of Long

Island (LI) likely drive the observed biogeographic pat-
terns in environment–recruitment relationships. Payne et al.
(2017) suggests that identifying biogeographic patterns in
environment–recruitment relationships may be key for ob-
taining accurate fisheries projections from environmental
variables. Such patterns were observed in the present study,
where recruitment in eastern waters is more influenced by
wind patterns than that of western waters. This pattern is
likely due to the lack of a major freshwater source influenc-
ing flow in Regions 2 and 3, whereas Region 1 may be more
influenced by the Hudson River. In NYS waters, Zhang et al.
(2009) found that the Hudson River plume can extend well
into Region 1 waters. Chant et al. (2008) found that coastal
chlorophyll concentrations in Region 1 match that of Upper
New York Bay (1.6 gm C m−3), whereas coastal chlorophyll
concentrations in Regions 2 and 3 are lower (1.3 gm C m−3).
Therefore, in Region 1, wind influences may be subdued by
that of the Hudson River, which may impact surfclam recruit-
ment via affecting food quality and quantity. Furthermore,
Vânia et al. (2014) found that in Portugal, catch of lagoon bi-
valve species (i.e., those more influenced by river output) is
primarily driven by SST and catch of coastal bivalve species
is more driven by wind patterns. Such a framework matches
and provides further support for the proposed mechanisms
driving the spatial patterns found in the present study.

Models yielded a negative relationship between FallT and
CSI values in Regions 1 and 2, and no temperature relation-
ship with CSI values in Region 3, likely due to the previ-
ously described oceanographic gradients. It is possible that

in Regions 1 and 2, warmer fall temperatures yield direct
metabolic stress on juvenile (i.e., recently settled) surfclams,
resulting in poor recruitment. It is also possible that warmer
fall temperatures increase predation pressure on juvenile sur-
fclams, as predation is known to impact surfclam recruit-
ment variability (Weissberger and Grassle 2003; Quijon et
al. 2007). Warmer fall temperatures may not only increase
metabolic rates of predators and therefore consumption rates
of juvenile bivalves by predators (Miller 2013), but may also
extend the season during which predators are consuming ju-
venile bivalves (Beukema and Dekker 2014). These mecha-
nisms may explain historical recruitment trends; however,
projections do not account for inherent mechanism nonsta-
tionarity. For example, ocean warming may cause Region 3
temperatures to eventually eclipse thermal thresholds, sim-
ilar to Regions 1 and 2. Therefore, Region 3 may eventually
yield a negative CSI–SST relationship, which may cause pro-
jections to lose accuracy through time due to extrapolations
beyond the training range. While this possibility was taken
into consideration and is in part why projections to 2100 were
not attempted, future surfclam survey data would help in un-
raveling this potential nonstationarity.

Region 2 demonstrated a positive relationship between CSI
and SummerU and Region 3 demonstrated a negative rela-
tionship with SpringU. These results suggest that winds blow-
ing to the east result in better recruitment in western NYS
waters and that winds blowing to the west result in better re-
cruitment in eastern NYS waters. Given that Middle Atlantic
Bight (MAB) surfclams spawn in June and July and that in the
present study, SpringU includes June winds and SummerU
includes July winds, it is possible that these relationships
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Fig. 6. Observed (black lines) cohort strength index (CSI)
trends from 1987 to 2004 and projected (gray lines) CSI trends
from 1987 to 2019 from selected models (see Table 3) in Re-
gion 1 (A), Region 2 (B), and Region 3 (C). Arrows denote
when Part 1 (CSIs projected from observed values) and Part 2
(CSIs projected from Coupled Model Intercomparison Project
6 projected values) projections begin. Shaded regions repre-
sent 95% confidence intervals.

stem from wind-induced changes in larval transport and set-
tlement locations. It is believed that larvae released in LI ei-
ther settle in western LI, due to along-shore density-driven
flow, or get transported to New Jersey (NJ) (Zhang et al. 2015).
It is also believed that larvae that are released in Southern
New England (SNE) either settle in SNE or get transported to
eastern LI (Zhang et al. 2015). Therefore, established larvae
dispersal patterns combined with the results of the present
study support the idea that strong eastward winds may limit
westward transport of larvae to NJ from LI, allowing more lar-
vae to settle in western LI (Fig. S6), and that strong westward
winds may allow increased transport of larvae to eastern LI
from SNE, as opposed to those larvae being retained in SNE
(Fig. S6). Previous field and biophysical modeling studies in
the MAB have found that wind direction and speed can be
linked to bivalve larvae settlement and recruitment due to
similar larval transport mechanisms (Hart et al. 2020; Chen
et al. 2021). Chen et al. (2021) also found that stronger north-
easterly winds increased along-shore transport of scallop lar-
vae in the MAB, providing support for the hypothesis that in

the New York Bight (a subsection of the MAB), stronger east-
erly winds may increase transport of surfclam larvae from LI
to NJ waters.

Food supply is also known to be a significant driver in inter-
annual variation in shellfish recruitment (Carloni et al. 2018).
Vânia et al. (2014) proposed that wind patterns may affect re-
cruitment by influencing food supply for larvae and adults
experiencing gametogenesis. Such a mechanism may explain
why WinterV was retained in the best-fit model for Region
2 and selected for by LASSO in Region 3. More specifically,
changes in the onset and intensity of the spring bloom lead-
ing to changes in food supply may explain the link between
WinterV and recruitment. Henson et al. (2006) found that in
the north Atlantic, stronger winter winds delay the spring
bloom (via delayed stratification) to late May and June, at the
end of surfclam gametogenesis and start of spawning. The
present study found that stronger WinterV winds are linked
to higher CSI values. Therefore, it is possible that stronger
winter winds increase surfclam recruitment by delaying the
bloom and increasing food availability during gametogene-
sis for spawning adults. Saba et al. (2015) also found that
stronger winter winds correlated with higher spring chloro-
phyll concentrations in Georges Bank, providing further ev-
idence for the idea that winter winds may project surfclam
recruitment via indirect food supply links. A similar mech-
anism offers an additional explanation for CSI relationships
with Spring and Summer winds, as Spring wind patterns have
also been linked to chlorophyll production in NYS waters
(Stegmann and Ullman 2004). Previous studies have success-
fully linked wind patterns to bivalve recruitment variabil-
ity via food supply links (Fournier et al. 2012; Daewel et al.
2015), potentially via enhanced gametogenesis. It should be
noted that the present study treats temperature and wind
as separate variables. In coastal waters in the NYB, however,
wind-induced upwelling can lead to lower temperatures, sug-
gesting temperature and wind can be correlated (Yankovsky
and Garvine 1998). Results suggest this link may be impor-
tant, as positive SummerU winds led to higher CSI values
(Region 2). In theory, more positive SummerU winds should
lead to upwelling in NYS waters, and therefore cooler (and
more physiologically tolerable) temperatures for surfclams.
However, LASSO accounts for correlated variables, including
direct measures of upwelling/downwelling as predictor vari-
ables may better relate or separate temperature and wind ef-
fects. Unfortunately, the low sample size in the present study
limited inclusion of additional predictor variables, but future
surfclam surveys would allow for higher degrees of freedom
and therefore allow for inclusion of additional predictor vari-
ables (e.g., upwelling).

4.3. Projections and uncertainty
Studies that project marine ecosystem production metrics

(e.g., fisheries recruitment) from climate–recruitment rela-
tionships typically suffer from significant uncertainty, po-
tentially due to biased climate projections (Punt et al. 2014;
Cheung et al. 2016). The present study addresses that criti-
cism by using higher resolution from multiple models and
therefore less biased climate projections. In addition, using
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CMIP6 GCM output over that of CMIP5 may be especially im-
portant for fisheries projections in the north Atlantic and
elsewhere, because CMIP6 output yields less biased SST pro-
jections (Li et al. 2020; Borchert et al. 2021). Additionally,
CMIP5 output from CESM1-CAM5 and FGAOLS (two of the cli-
mate models used in the present study) have demonstrated
relatively high, relative forecasting accuracy for SST and wind
vectors (Li et al. 2013; Li et al. 2014; Halder et al. 2021). Fur-
thermore, use of CMIP6 GCM output with enhanced spatial
resolution likely increases model precision because previ-
ous results relied on statistical downscaling, which although
sometimes beneficial, is also prone to increased uncertainty
(Dimitrijevic and Laprise 2005; Pielke and Wilby 2012; Sunyer
et al. 2012). It is the hope of these authors that using CMIP6
GCM output, as was done in the present study, will repre-
sent the new standard of fisheries projections under climate
change scenarios.

Although CMIP6 projections yield a slight increase in re-
cruitment in Region 3, Regions 1 and 2 both exhibited nega-
tive relationships with FallT and yielded projections of a 100%
decline in recruitment by 2050. GCM output projected an in-
crease in Fall SST of approximately 0.5 ◦C per decade in NYS
waters. Although this is relatively high for other coastal re-
gions in the north Atlantic (Villarino et al. 2015), it is com-
parable to other reports of increasing Fall SST trends in the
MAB (Wallace et al. 2018). If an SSP2 (equivalent to RCP4.5)
was used, it is possible that projected surfclam recruitment
may yield lower declines in western waters, as SSP2 would
yield lower SST increases (∼1 ◦C in the north Atlantic by
2050) (Khan et al. 2013; Fischer 2015). Speculating on differ-
ent outcomes under different SSP scenarios represents just
one type of uncertainty in considering fisheries-climate pro-
jections. Model uncertainty and internal variability should
also be considered when making projections (Cheung et al.
2016). The present study attempted to account for model un-
certainty by using multiple GCMs, choosing GCMs that had
previously been compared to observed data (e.g., Voldoire et
al. 2019) and choosing GCMs with the highest spatial resolu-
tion. However, model uncertainty cannot be eliminated, es-
pecially for Regions 2 and 3, as these regions used wind pro-
jections and only three GCMs. Furthermore, the models in
the present study likely missed internal ecological variabil-
ity, potentially limiting projection precision. For example,
predation impacts surfclam recruitment but predation was
not included in models and projections. Future work may use
ecosystem level models (e.g., Ecopath with Ecosim) to create
projections that may better account for internal ecological
variability.

5. Conclusions
Broadly speaking, the models developed here suggest that

surfclam recruitment will decrease in western NYS waters
due to rising SST and slight increase in eastern NYS waters
due to changing wind patterns. New surfclam surveys would
be crucial in validating models, particularly in eastern NYS
waters where nonstationarity may alter the recruitment–
temperature relationships. However, as of 2019, local surf-
clam fishermen almost exclusively fish in eastern NYS waters

because they are unable to find enough surfclams in western
NYS (Region 1) waters to financially support fishing trips. Al-
though anecdotal, such information supports the observed
relationships and projections. Multiple experimental and
field studies support the discussed thermally induced mecha-
nisms, but additional field studies regarding surfclam larvae,
recently settled surfclam larvae, and food sources are needed
to explain the underlying hydrodynamic mechanisms behind
the observed recruitment–wind relationships. Additionally,
biophysical modeling studies with sensitivity analyses to ex-
amine the degree to which wind can affect larval transport
patterns would provide insight regarding recruitment–wind
relationships. Nevertheless, the present study not only pro-
vided the first long-term quantification and projection of sur-
fclam recruitment using updated climate projections but also
found longitudinal spatial patterns in recruitment and re-
lated temporal patterns in recruitment to climate variables.
These relationships and their projections may improve strate-
gic management of the surfclam fishery. Additionally, the
present study provided an updated method (i.e., a region-
specific, semiautomated variable and model selection pro-
cess) for fisheries recruitment–climate modeling that yielded
reasonably high predictive accuracy and will therefore hope-
fully serve as a template for future studies that aim to project
recruitment in response to climate change for other temper-
ate, coastal species.
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