A Comparison of HPF-like Systems: Early Prototypes*

V.Getov' T.Brandes’ B.Chapman® T.Hey! D. Pritchard!

' Department of Electronics and Computer Science
University of Southampton, Southampton SO17 1BJ, UK.

*German National Research Center for Computer Science
P.O. Box 1316, 53731 St. Augustin, Germany

*Institute for Statistics and Computer Science
University of Vienna, Bruenner Str. 72, Vienna A-1210, Austria

HPCC94-009

Abstract

This paper describes our experience with some of the prototype HPF parallelisation tools, namely
Adaptor, Fortran 90D and xHPF90, as they were available to us at the end of 1993. The comparison
and evaluation of these early HPF compilers was equally difficultand important in order to gainsome
feedback to the compiler designers but also to accumulate some initial skills in writing efficient HPF
programs. The available HPF-like systems were applied to the existing GENESIS benchmarks that
have already been rewritten in Fortran 90 with HPF data distribution directives. At the beginning
of the paper, an overview of the three systems is given with emphasis on their specific features
and limitations, together with comparative analysis based on carefully designed methodology. The
comparison includes a detailed study of the extent of implementation for both Fortran 90 and subset
HPF attributes into the prototype systems, as well as the compilation characteristicsof those systems
and the range of new language features covered by the test programs. In order to ensure a basis
for comparative performance evaluation, all benchmark measurements were taken on iPSC /860
as it was the only common platform for the three prototype systems. The subset HPF compiler
tools under consideration have been having different levels of development during the evaluation
exercise, and therefore the extent of benchmark measurements is different for different systems. The
evaluation results include discussion and comments on compiling and runing the benchmark codes
with focus on subset HPF features and some optimisation strategies for compilation of data-parallel
programs in terms of communication, temporary storage requirements, and processor utilisation.
The benchmark measurements are finally presented along with a comparison to the corresponding
hand-written message-passing versions of benchmarks and interpretation of performance results.

*This work was supported in part by ESPRIT (CEC) through project P6643 (PPPE), the Engineering and Physical
Sciences Research Council (UK) under contract # GR /J50309 and the Austrian Ministry for Science and Research (BMWEF).

1 Introduction

The specification of High Performance Fortran (HPF) language [14] represents an extension to For-
tran 90 [17] which addresses the problem of automatic parallelisation of data parallel programs
within the Single Program Multiple Data (SPMD) model of parallel computations. The main exten-
sion streams of the language are data distribution features (new directives ALIGN, DISTRIBUTE,
TEMPLATE, PROCESSORS, etc.), concurrent execution features (FORALL construct and several
new intrinsics) and EXTRINSIC procedures. In order to allow early compiler availability, subset
HPF has been defined within the HPF language specification document. It is intended that subset
HPF will be capable of being implemented more rapidly by vendors, which will ensure that subset
HPF codes will be able to run at an early date ona variety of different machines. In general, subset
HPF includes data distribution features, Fortran 90 array language, dynamic storage allocation,
FORALL statement and long names. It does not include dynamic data distribution, FORALL
construct, EXTRINSIC procedures, generic functions and the Fortran 90 free source form.

The central idea of the automatic parallelisation is to distribute the large data structures like
arrays among the available processors. This should be performed in such a way that most
operations could be done locally without need of communication. The corresponding message
passing statements are inserted automatically where global operations are necessary. Therefore
the data parallel program with global data references is translated together with a user specified
or implicitly defined data distribution, into a program with local and non-local references, where
the latter are satisfied by automatically inserted message-passing statements. There were already
some HPF-like systems available at the end of 1993 that make an automatic partitioning of data
parallel Fortran 90 programs. These include:

* ADAPTOR is a tool developed at the GMD, Germany;
e The Fortran 90D compiler has been developed at the University of Syracuse;

¢ FORGE-90/xHPF90 is an automatic paralleliser for HPF developed by Applied Parallel
Research, Inc.

These tools were applied to existing applications (GENESIS Benchmark Suite) that have already
been rewritten in Fortran 90 with HPF data distribution directives. The goal of the task is to
accumulate some early experience, which would allow us to find out how efficient such automatic
partitioning tools are, for which kind of applications they are useful and for which applications
they fail.

This paper gives a detailed description of the experiences, possible improvements for the tools,
hints how to write efficient applications that can be translated with these tools, and a qualification
whose applications are not suitable for an efficient translation. The paper also presents a com-
parison of capabilities for the prototype systems listed above and recommendations for the HPF
compiler designers.

2 Description of prototype HPF-like systems

2.1 Adaptor

Adaptor (Automatic Data Parallelism Translator) is an HPF system developed at the GMD for
translating data parallel Fortran programs into equivalent Fortran 77 message passing programs
[6, 7]. Most features of Connection Machine Fortran (CMF) and many features of HPF are

supported. The parallel program can be written in such a way that it could be developed on a
serial machine and is also suitable for vector machines or parallel machines with shared memory.
Many features supported by Adaptor result also in good execution times for these architectures.
In this way, it helps to design programs that run efficiently on nearly all architectures.

Adaptor only takes advantage of the parallelism in the array operations and of the parallel loops.
It has no features for automatic parallelisation.

The source language of Adaptor can be defined briefly in the following way:

e Fortran 77

e the array extensions of Fortran 90 (inclusive dynamic arrays and intrinsic functions for
arrays),

o layout directives to specify the data distribution,

e features of Connection Machine Fortran and High Performance Fortran (FORALL statement,
new intrinsics, timing, random numbers).

The user can define host arrays, replicated arrays and distributed arrays. Similar directives as in
CMEF or HPF are also used for the specification of data layouts in Adaptor. As well as that, the
parallel FORALL statement supported by Adaptor has the same syntax and semantics as proposed
in these data parallel languages.

Many features of Fortran 90 and HPF cannot be used with Adaptor. The most serious restric-
tions are that Adaptor supports no modules, no pointers, no array-valued functions and no
assumed-shaped arrays. Adaptor only supports block distributions along one dimension. More
distributions will be supported in future releases.

Explicit alignment can be used in CMF and HPF to reduce communication. For Adaptor this
feature has not been supported until now, but of course there is an implicit alignment of arrays
that are declared and distributed in the same way.

Although the user will need to understand some issues of parallelism and has to know for
efficiency reasons where message passing will be generated, the effectiveness of Adaptor is based
on the fact that the user does not have to know any message passing commands, neither does he
have to manage the control of the data partitioning. The programmer can change types of variables
(e.g. single to double precision) and data distributions without rewriting any other statements in
the program. There is no need to write two versions of code (host and node program) and many
global array operations are translated to the most efficient code for the underlying architecture.
The user can select between the following three programming models:

o If the HOST-NODE programming model is selected, Adaptor will generate a host program
and a node program. The node program runs on all available nodes of the parallel machine,
while the host program contains all I/O operations that will be executed on the front end
system.

e In the HOSTLESS programming model, only one program will be generated, running on all
available nodes. There is no host program. The first node takes care of all I/O operations.

e A program that runs only on a single node is generated when using the UNIPROC pro-
gramming model. The program has no communication and therefore it ought to be faster
than the previous one running on a single node. By choosing this model, programs with
array operations, not available in Fortran 77 can be translated into sequential Fortran 77
programs.

—

CMFortran+HPF Lexer & Parser Normalization
el Temporary
Serialisation :
Arrays Creation

[e I .
PARMACS : Fortran 77 + MP
} Code Generation
Library Code
: tiy
Distributed Array Target Compiler SPMD Target
Library + Linker Executable

Figure 1: Overview of Adaptor

The following steps are done during the source to source transformation of Adaptor (see Figure 1):

1

The source program is parsed and an abstract syntax tree is generated. Symbol tables are
created and used for a semantic analysis.

The program (abstract syntax tree) is normalized as far as possible to reduce the complexity
of the translation system.

. The program statements are splitted up into local and non-local operations. Temporary

variables are created where necessary.

. The array operations are translated into FORALL statements in the serialisation phase and

the parallel loops are analysed.

. The parallel loops are restricted to the local part owned by every processor in the final trans-

lation phase and communication statements for exchanging non-local data are generated.
The new internal abstract syntax tree is unparsed back to source text.

Adaptor generates also a Makefile. Compiling and linking the generated message passing
programs is performed by the Fortran compiler available on the target parallel machine. In order
to perform the communication needed for global operations on distributed arrays, many library
functions that build the distributed array library (DALIB) are implemented. This library contains:

¢ low level communication (send, receive, wait, etc.);

e high level communication (broadcast, reduction, barrier, etc.);

¢ data movements based on regular and irregular communication patterns;

e timing functions and tracing facilities;

* a parallel random number generator.

DALIB is implemented in C and can be considered as the runtime system of the whole compilation
system. Most of the routines in this library are portable between different parallel platforms. Only
the low level message passing commands, the timing functions and the random number generator
have to be adapted to the target hardware architecture.

The following parallel machines are currently supported: CM-5, iPSC/860, Meiko CS1 and cS2.
Parsytec GCel, KSR 1, SGI Multiprocessor Systems, and Alliant FX/2800. One version of DALIB
is also implemented upon the public domain software PVM [9]. It guarantees the portability of
the generated parallel programs to all machines where PVM is available.

The functionality and stability of Adaptor has improved dramatically if compared with version
0.1 from October 1992. Now the tool can also be used to translate a data parallel program to
a serial Fortran 77 program. The source files of the current version 1.1 (September 1993) of
Adaptor, the documentation files in PostScript and a number of example programs are available
via ‘anonymous ftp’. The address of the ftp-server is ftp.gmd. de (129.26.8.90), the files are in
the directory gmd/adaptor.

Adaptor is a prototype compilation system for High Performance Fortran. Although the current
version of Adaptor has many restrictions, the system gave useful insights in how to design efficient
HPF compilers and to develop and integrate useful optimization strategies. Many users could
take advantage of the Adaptor tool to develop future HPF applications.

2.2 Fortran 90D compiler

Fortran 90D is a Fortran 90 version of the Fortran D language [8]. Since Fortran D essentially
adds to Fortran 90 extensions for data partitioning very similar to HPF, the authors from Syracuse
University call their compilation system the Fortran 90D/HPF compiler. This compiler exploits
only the parallelism in the data parallel constructs. It does not attempt to parallelise other
constructs, such as do-loops and while-loops, since they are used only as naturally sequential
control constructs in this language. The foundation of the design lies in recognizing commonly
occurring computation and communication patterns. These patterns are then replaced by calls
to optimized run-time support system routines. The run-time support system includes parallel
intrinsic functions, data distribution functions, communication primitives and several others
miscellaneous routines.

Figure 2 shows the basic components of the Fortran 90D compiler. The first step of the compilation
is to check the syntax correctness of the source code. Given syntactically correct Fortran 90D /HPF
program, the second step of the compilation is to generate a parse tree. The front-end module for
the compiler, which incorporates both lexer and parser for Fortran 90 programs has been obtained
from ParaSoft Corporation. In this module, the compiler also transforms each array assignment
statement and where statement into equivalent FORALL statement with no loss of information.
In this way the subsequent steps need only deal with FORALL statements.

The partitioning module processes the subset HPF data distribution directives; namely, decom-
position distribute and align. Using these directives, it partitions data and computation (only
FORALL statements) among processors. After partitioning, the parallel constructs in the node
program are sequentialised since it will be executed on a single processor. The Fortran 90D
compiler has to sequentialise Fortran 90 parallel constructs into sequential loops as there are few
Fortran 90 compilers available for the nodes of MIMD distributed memory computers. This is
performed by the sequentialisation module. Array operations and FORALL statements in the
original program are transferred into loops or nested loops.

Partitioning

Lexer & Parser
F-90D/HPF Depen. Analysis

Communication e
: Sequentialiser
Insertion
I . I .
Intrinsic functions) Fortran 77 + MP
. Code Generation
Library Code

|
. i

PARTI run-time Target Compiler SPMD Target
+ Linker Executable

Library

Figure 2: Steps in creating a SPMD program using the Fortran 90D/HPF compiler

The communication module detects communication requirements and inserts appropriate com-
munication primitives. The Fortran 90D compiler produces calls to collective communication
routines instead of generating individual processor send and receive calls inside the compiled
code. There are three main reasons for using collective communication to support interprocessor
communication in the compiler:

¢ Improved performance of HPF programs - this can be achieved by developing a separate
library of interprocessor routines where each routine can be optimized;

o Increased portability of the Fortran 90D compiler - by separating the communication library
from the basic compiler design only the machine specific low-level communication calls
need to be changed when porting the compiler to a new platform;

e Improved performance estimation of communication costs - the costs of collective com-
munication routines can be determined more precisely, thereby enabling the compiler to
generate better distributions.

Finally, the code generator produces loosely synchronous SPMD code. The generated code is
structured as alternating phase of local computation and global communication. Local computa-
tions consist of operations carried out by each processor on the data in its own memory. Global
communication includes any transfer of data among processors, possibly with arithmetic or logical
computation on the data as it is transferred (e.g. reduction functions). In these circumstances,
processes do notneed to synchronize during local computation. But, if two or more nodes interact,
they will be implicitly synchronized by global communication.

The run-time support system of the Fortran 90D compiler consists of functions which can be called
from the node programs of a distributed memory machine. Intrinsic functions support many of
the basic data parallel operations in Fortran 90. Not only do they provide a concise means of

expressing operations on arrays, but they also identify parallel computation patterns that may be
difficult to detect automatically. The intrinsic functions that may induce communications can be
divided into five categories as follows:

e structured communications - CSHIFT, EOSHIFT

¢ reduction - DOTPRODUCT, ALL, ANY, COUNT, MAXVAL, MINVAL, PRODUCT, SUM,
MAXLOC, MINLOC

¢ multicasting - SPREAD
e unstructured communications - PACK, UNPACK, RESHAPE, TRANSPOSE
e special routines - MATMUL

The first category requires data to be transferred using less overhead structured shift commu-
nication operations. The second category of intrinsic functions requires computations based on
local data, followed by the use of a reduction tree on the processors involved in the execution
of the intrinsic function. The third category uses multiple broadcast trees to spread data. The
fourth category is implemented using unstructured communication patterns. The fifth category is
implemented using existing research on parallel matrix algorithms. The current implementation
of Fortran 90D (f release, August 1993) has more than 500 parallel run-time support routines
divided into two libraries - INTRIN (Intrinsic) and PARTI (Parallel Automatic Runtime Toolkit
from ICASE) built on the top of Express message passing primitives [18]. Hence, in order to
switch to any other message passing system, it will only be necessary to replace the calls to the
communication primitives in the two libraries.

2.3 xHPF translator

The FORGE 90 package consists of several modules that are currently available for user-guided or
automatic parallelisation of Fortran programs. The baseline system is an analysis tool for Fortran
77 programs and is required in order to use any other modules. The remaining parts include a
distributed memory parallelisation tool (DMP), and a subset HPF translator (xHPF).

The xHPF translator is the most recent part of the FORGE 90 parallel programming environment
[4]. It performs automatic parallelisation of subset HPF programs. The xHPF system is identical
to the xHPF77 system, with the addition that the Fortran 90 syntax is initially converted into
Fortran 77. The xHPF system is limited to the Fortran 90 features identified by the HPFFE.

Fortran 90 programs must first be converted into Fortran 77 and then the Fortran 77 code examined.
This is performed by KAFPR, a special modification of the KAP pre-processor from Kuck and
Associates Inc. (KAI), which acts as a front-end for xHPF (see Figure 3).

The xHPF77 is a new module offered by APR which is available as an addition to the DMP.
The xHPF77 system accepts Fortran 77 with HPF data distribution directives and translates this
to Fortran 77 with message passing. The xHPF77 module does not implement any additional
features for parallelising code over the DMP. Accordingly data distribution in the xHPF77 system
is restricted to one dimension.

The HPF directives specify the data partitions only, while the DMP requires both data distributions
and loops for parallelisation to be specified. The approach xHPF77 follows is that all loops that
contain the distributed data are parallelised. As this translator is built upon the DMF, all the
limitations of the DMP still apply. Hence no code restructuring takes place resulting in possible
inefficiencies in the parallelised code.

[
: il HPF-77
HPFortran pre-processor . 4

rli
Sequential FORGE 90
Fortran 77 Baseline + DMP
i ! e
Native Comm SPMD Fortran 77
Library pref77 + FORGE Calls
b | g
APR run-time Target Compiler SPMD Target
Library + Linker Executable

Figure 3: Steps in creating a SPMD program using the FORGE 90 system

The data partitioning commands and loop distribution commands are stored separately from the
sequential code. There is a preprocessor called “pref77’ which is used to create the SPMD program
from the sequential code and the commands stored by the DMP. This has the advantage that it is
possible to maintain the sequential code and execute the same parallelisation commands to result
in a new parallel program.

The parallel program produced by ‘pref77’ contains calls to FORGE's native communications
library. This code must then be compiled by the target system compiler and linked to a specific
communication syntax. Currently FORGE have communication libraries for native INTEL, native
nCUBE, PVM, EXPRESS and P4. Calls to the subset HPF intrinsic functions and subroutines that
are not already part of Fortran 77 are linked to routines provided by the APR’s run-time library.

3 Comparison methodology

3.1 Compiler features of prototype systems
3.1.1 Supported features of Fortran 90

Table 1 gives a general overview of the implementation status of the Fortran 90 features as defined
in the subset HPF definition [14] within the compiler tools under evaluation. The information is
based on the existing documentation, papers, etc. and also on the experiments with the GENESIS
benchmarks and some other small examples where necessary.

The information in Table 1 shows thatall Fortran 90 features in subset HPF have been implemented
in the xHPF90 compiler. Array-valued functions, allocatable arrays, interface blocks and optional

Table 1: Implementation of Fortran 90 features in subset HPF

Features Adaptor | Fortran 90D | xHPF90
MIL-STD-1753 features yes yese yes
Array syntax yes yes’ yes
WHERE construct yes yes yes
Array valued functions no no yes
Automatic arrays yes no yes
Allocatable arrays no no yes
Intrinsic functions not all not all yes
New type declarations yes yes yes
Interface blocks ignored® no yes
Optional arguments no no yes
Syntax improvements yes yes? yes

@There are problems with the implementation of the IMPLICIT NONE statement (see section 4.2).
bCurrently only the WHERE statement is implemented

“Feature is parsed and recognized but not really supported.

dThe ‘" form of comments is not implemented for the HPF directives.

Table 2: Implementation of subset HPF features

Features Adaptor Fortran 90D xHPF90
Processors directive ignored*” yes ignored*
Template directive yes yes yes
Distribution dimensions 1dim 2 dim 1 dim
Decomposition attributes | BLOCK BLOCK, CYCLIC | BLOCK,CYCLIC?
Simple alignment yes yes yes

Full alignment (a I + b) no no no
FORALL statement canonical® yes yes

aFeature is parsed and recognized but not really supported.
bXHPF90 provides also several other attributes to specify the memory allocation for distributed arrays.
¢The indices must be simple functions of the loop variables of the FORALL statement.

arguments are not implemented in Adaptor and Fortran 90D yet. Both compiler tools support
most of Fortran 90 array intrinsic functions (see sec. 2.1 and 2.2) with some exceptions regarding
data types, construction functions, number of dimensions, etc.

Some Fortran 90 features (free source form, modules, pointers, derived types, recursion, new
control constructs, etc.) are not in the subset. In most cases the HPF systems under consideration
do not support these features as they have committed themselves to the subset HPF language.

3.1.2 Supported HPF features

Table 2 shows which subset HPF directives are recognized and processed by the compiler tools
under evaluation.

The PROCESSORS directive is vital for Fortran 90D, whereas it is accepted but not implemented
by Adaptor and xHPF90. The latter case is the basis for generating an output code which is
independent of the number of processors (see Table 4). One of the most important parameters of
HPF-like compiler tools is the number of distribution dimensions. These are one of the strongest

restrictions being only one or two at the time of evaluation exercise. The HPF DISTRIBUTE
directive provides BLOCK and CYCLIC decomposition attributes in most of the compiler tools
(Adaptor is the only exception). xHPF provides some extra explicit (non-standard) decomposition
attributes to widen the variety of possible mappings of data objects to abstract processors.

We consider the case when all data objects are aligned to the template using simple constant
expressions, as a simple alignment. This alignment simplifies data decomposition and does not
imply the need of generating complex alignment trees, as the data objects are directly aligned to
the template. In this case at least one template directive must exist in the program. The full (in
terms of subset HPF) alignment lifts these restrictions but does not accept alignment subscripts
more complicated than first order with constant offset (a * I + b).

Although very rarely, the HPF-like systems under consideration support some of the features of
full HPF. Table 3 contains the information on this matter.

Table 3: Implementation of full HPF features not in subset HPF

Features Adaptor | Fortran 90D | xHPF90
Redistributions no no no
Inherited dist. no no yes
FORALL construct no no yes
HPF library only scatter no yes
Extrinsic Procedures | possible no yes
PURE attribute yes no no

3.1.3 Compilation characteristics

It is important for the user to know how to deal with a translation tool. Table 4 gives a summary
of the compilation characteristics for the four HPF-like systems under consideration. It can be
possible that the tool has its own driver program that translates, compiles and links the program
with the run-time system. One would also expect the tool to generate a Makefile. Some tools
can be used in a batch manner and/or interactively.

When considering larger programs the HPF-like systems should be able to perform separate
compilation. This means that the whole program can be split up in several files which can be
compiled independently.

The executable of the generated SPMD program will be loaded on the nodes of the parallel
machine. Sometimes, the code runs only on the number of processors that has been specified
for the translation with the tool (static case). It would be more convenient for the users if the
executable is not dependent on the number of processors the parallel program will be running
on(dynamic case).

In the context of message passing programming overlap areas are used for distributed arrays.
The overlap area contains data that is not owned but only used by the processor. Data in overlap
areas is replicated data and must therefore be the same among all the processors. If a compiler for
HPF does not insert overlap areas in the generated message passing program, many additional
temporary arrays are usually required. This will not increase the communication traffic, but more
memory space and more local memory transfer is necessary. Sometimes it might be possible
that the user specifies the overlap area by its own (restricted case), but the automatic insertion of
overlap areas is obviously more convenient.

HPF is a language where actual and dummy arguments might have different distributions. There-
fore implicit redistributions at the entry and after the end of the subroutine might be required.

10

Table 4: Some important compilation characteristics

Features Adaptor | Fortran 90D | xHPF90
Compiler driver batch batch batch
Makefile yes no no
Separate compilation no no yes
Number of processors | dynamic static dynamic
Overlap areas restricted no no
Redistribution at

subroutine boundaries no no no

Subset HPF compilers have to support this feature, otherwise the user must take care of the
redistributions.

3.2 Description of test programs

Most of the GENESIS benchmarks were initially developed within ESPRIT Project P2702 - GEN-
ESIS [13] by a number of project partners including Liverpool and Southampton Universities,
PALLAS GmbH, the European Centre for Medium Range Weather Forecasting and the Universitat
Politechnica de Catalunya. The current release (2.2) of the GENESIS benchmark suite is based on
subset HPF, whilst future releases will be able to take advantage of dynamic data distribution,
data parallel programming (FORALL construct) and code tuning by EXTRINSIC procedures. A
subset HPF conversion strategy, which assumes that the conversion process is divided into two
phases (see Fig. 4), has been adopted. During the first phase the work is concentrated on the
development of Fortran 90 version of the benchmarks. A main task in this phase is to introduce
array constructs into the codes. The second phase addresses the data distribution, resulting in the
subset HPF version of benchmarks [11].

Sequential standard Distributed memory
Fortran 77 version PARMACS version

Array Data
Constructs Distribution

Subset HPF

version

Figure 4: Subset HPF conversion strategy

Release 2.2 of the GENESIS benchmarks comprises sixteen codes that vary from synthetic code
fragments measuring basic machine parameters, through important application kernels, to com-
pact research applications [1]. This hierarchical structure allows information derived from the
simpler codes to be used in explaining the performance characteristics of the more complicated
codes. Thus the benchmark suite can be used to evaluate performance on a range of levels from
simple machine parameters to full applications where effects due to non-parallelisable sections

11

of code, and memory, communication or I/O bottlenecks may become important. The following
codes have been used in the evaluation of HPF-like systems:

TICK1 Measures resolution of system clock.
Versions F-77, Subset HPF

TICK2 Measures accuracy of system wall-clock time.
Versions F-77, Subset HPF

TRANS1 This benchmark distributes a matrix into square submatrices for parallel transposition
using naive algorithm. During the execution pairs of processors communicate with each
other simultaneously exchanging very long messages (depending on the problem size and
the number of processors).

Versions F-77, PARMACS, Subset HPF

FFT1 One-dimensional FFT. Popular test with relatively high level of parallelism, but low level
of vectorisation and a hypercube type communication.

Versions F-77, PARMACS, Subset HPF

PDE1 Three-dimensional Poisson solver using red-black relaxation. Only nearest neighbour
interactions are required and the number of floating point operations per grid point is very
small when compared to other more complex PDEs.

Versions F-77, PARMACS, Subset HPF

PDE2 Two-dimensional multi-grid Poisson solver. This kernel requires highly structured long
distance communication. During the solution process messages and vectors ranging from a
single word upwards are used. Efficient execution of this problem therefore requires good
short vector performance for each processing node together with a reasonably low start-up
time for message passing.

Versions F-77, PARMACS, Subset HPF

MD1 Molecular dynamics code. This benchmark uses techniques from molecular dynamics
to solve the Newtonian equations of motion for large number of interacting particles. The
solutionis used to calculate thermodynamic properties of the system. The benchmark uses a
Lennard-Jones potential with a linked-list algorithm for solution of the equations of motion.

Versions F-77, PARMACS, Subset HPF

The utilized Fortran 90 subset features of test programs are summarised in Table 5 and the utilized
subset HPF features are given in Table 6. The current set of GENESIS benchmarks includes regular
problems in one, two, three and four dimensions. From this point of view all benchmarks conform
to the SPMD programming model and allow HPF transformations. It is essential to know which
subset HPF features are utilized in the GENESIS benchmark codes. The two tables below contain
this information. ‘Stack allocate’ in Table 5 means that a DEALLOCATE statement deallocates
both the specified array and any others allocated after it. There are no codes which use features
of Fortran 90 or HPF, that are not in the subset. In the case of MD1 one could take advantage of the
HPF library by using COPY_SCATTER.

Some additional comments:

e INHERIT directive is used in FFT1 and PDEI1, but the corresponding subroutines will always
be executed with the same distribution and no redistribution is required.

e MD1 has one- and three-dimensional distributions.

1874

Table 5: Utilized Fortran 90 subset features

Features TRANS1 il PDE1 PDE2 MD1

MIL-STD-1753 features yes yes yes yes yes

array syntax yes yes yes yes yes

intrinsic functions TRANSPOSE - MAXVAL | MAXVAL RESHAPE
CSHIFT, SPREAD

automatic arrays no yes no no yes(stack allocate)

full allocatable arrays no no no no no

array valued functions no no no no no

new type declarations yes yes yes yes yes

optional arguments no no no no no

interface blocks no no no no no

syntax improvement yes yes yes no no

Table 6: Utilized subset HPF features

Features TRANSI1 | FFT1 | PDE1 | PDE2 | MD1
processors directive yes yes yes no no
template directive no no no no no
distribute (BLOCK) no yes no no yes
distribute (BLOCK,BLOCK) yes no no yes no
distribute (BLOCK,BLOCK,BLOCK) no no yes no yes
simple alignment yes yes yes yes yes
full alignment (a = I + b) no no no no no
FORALL statement no no no no yes

e FFT1 and MD1 use indirect addressing.

Concerning the importance of the different codes for the HPF compilers the following can be
pointed out:

¢ TICK1 and TICK2 are only used for testing timer functions.

» TRANSI1 and PDE] contain very important features and should run efficiently. PDE1 would
take advantage from overlap areas.

¢ PDE2 should run efficiently and proves how well the compiler can deal with structured
communications and array syntax. It uses parameter functions.

o FFT1 tests indirect addressing and array movements, but the current version does not seem
to be so efficient.

¢ MD1 will test many HPF features, but the HPF version is very slow, compared to the serial
program.

13

4 Evaluation results

4.1 Introductory comments

The subset HPF compiler systems under consideration have been having different level of de-
velopment during the evaluation exercise. Therefore the extent of evaluation results is different
for different systems. Similarly, the different subset HPF systems have been having different
level of availability. The HPF versions of the GENESIS benchmarks have also been a subject of
development and alterations during the evaluation procedure. The changes to the benchmarks
can be classified in three categories as follows:

o First set of changes. A few syntax errors have been discovered as the subset HPF GENESIS
benchmarks were produced with the NAG'’s Fortran 90 compiler and had not been tested
with a real HPF system before.

o Second set of changes. The input language of different HPF tools conforms only to a subset
of subset HPE. The data partitioning has to be modified quite often so that the HPF product
could parallelise the code. The main restriction here was the limited number of dimensions
for data decomposition. This peculiarity of the current HPF-like compilers has been a source
for a number of editions in order to achieve successful compilation. These editions and the
corresponding limitations of every HPF tool under evaluationare described at the beginning
of the following subsections.

 Many specific changes have been attempted in order to help the compilers to overcome par-
ticular problems. Most of them are discussed in detail in the specific evaluation subsections
below.

The main emphasis of the benchmarking measurements has been focused on evaluating where
possible the HPF-like systems under consideration on iPSC /860 machines. The iPSC/860 is
the best parallel computer to perform this evaluation, as it is the only common platform for all
the three HPF-like translators, which would allow comparative performance results. Another
interesting and useful comparison is between the time measurements when compiling with the
prototype HPF systems and the time measurements from the hand-written code with explicit
message passing primitives (PARMACS macros [12] in our particular case).

The benchmark measurements were taken on four different iPSC/860 machines - the 64-node
configuration in Daresbury (U.K.), the 32-node hypercube in Jiilich (Germany), a 32-node machine
available to APR, Inc. (US.A.) and a small development platform at K.U. Leuven (Belgium).
Although the convenient and easy access has always been important, the main reason for using so
many different platforms has been the availability of all necessary pieces of system software and
programming environments. The evaluation details of the three hypercubes are given in Table 7.

42 TRANS1 benchmark

Figure 5 shows time measurements for the matrix transpose benchmark on the iPSC/860 and
plots the elapsed time against number of processors for different HPF-like systems and the hand-
written code for the PARMACS message passing environment. The execution time of the standard
Fortran 77 single-processor version (0.214 sec.) is also shown for comparison. The problem size
for the TRANS1 measurements was defined as MAXD = 480, which means a 480 x 480 square
matrix. It was not possible, however, to run the Fortran 90D measurements with this problem
size and the benchmarking results for this particular case were taken for a smaller problem size
(MAXD = 120). We see at least two reasons for that:

14

Table 7: Evaluation details of the iPSC /860 parallel platforms

Benchmarking ADAPTOR Fortran 90D xHPF PARMACS
Characteristics

No. of nodes 82 4 32 64
Local memory 16 Mbyte 8 Mbyte 16 Mbyte 16 Mbyte
1PSC System s/w Release 3.3.2 Release 3.3.2 Release 3.3.2 Release 3.3.2
Fortran compiler if77 Rel4.0 if77 Rel4.0 if77 Reld.0 if77 Rel4.0
Compiler switches -Mvect-O02 -Mvect-O4 -Mvect -O4 -Mvect -O4
M/P environment PARMACS 5.1 Express 3.2.1 NX-2 PARMACS 5.1

* The compiler generates too many temporary arrays and other extra code;

e The local memories on the hypercube at Leuven are smaller then the local memories on the
other platforms.

The hand-written PARMACS version of TRANSI can only be run on square configurations of
processors, as shown in the table. It has also been noted that Adaptor performs only one-
dimensional distribution of the arrays. The communication patterns are therefore different from
the patterns of the Fortran 90D and PARMACS versions of this benchmark.

4.3 FFT1benchmark

Figure 6 shows time measurements for the 1-dimensional FFT benchmark on the iPSC/860 and
plots the elapsed time against number of processors for the automatically produced code by Ad-
aptor and the hand-written code for the PARMACS message passing environment. The execution
time of the standard Fortran 77 single-processor version (1.403 sec.) is also shown for compar-
ison. The problem size for the FFT1 measurements was defined as LOGN = 16, which means a
transformation of 65536 complex data points.

The results have shown that the current ADAPTOR implementation of the FFT1 butterfly is very
inefficient for parallel execution. Although this code scales well, the HPF version is more than
100 times slower than the PARMACS version. In order to further investigate the reason for this
enormous delay a trace file has been generated and the timing diagram for the execution of the
butterfly phase produced using ParaGraph visualisation tool (see Figure 7). The diagram shows
that most of the time overhead has been spent in calculation operations. It is believed that this
significant delay is not a result of the temporary arrays generated by Adaptor, but only a further
investigation can give a detailed description of this problem.

Usually the communication structure of the butterfly phase of 1-dimensional hand-written FFTs
employs only one type of bidirectional communication between pairs of nodes. The two mes-
sages associated with every pair of nodes are independent and therefore they can be exchanged
simultaneously in order to decrease the communication time [10]. The diagram, however, shows
that the communication exchange has been sequentialized by Adaptor. It is also clear from the
diagram that Adaptor generates twice as many messages in comparison to the hand-written mes-
sage passing version. This is because the tool can not recognize the possibility of packing two
vectors (one for the real and one for the imaginary parts of the transform) in one buffer and to
decrease twice the overall message start-up time.

153]

= T =]
HPF system / MP env. =g —gie g oy = Rl — 0 IR 95 3
ADAPTOR (65 a0 40 008 - 0.12 - 0.09
Fortran 90D(MAXD=120) 0.31 032 2038 n/a - n/a - n/a
xHPF90 0245 0523 0344 0.194 - 0.107 - n/a
PARMACS - - 0.356 - 0.164 0.093 0.060 -

Figure 5: Elapsed time in seconds for the execution of TRANSI on iPSC/860, compiled with
Adaptor, Fortran 90D, xHPF90 and PARMACS. The problem size is defined by MAXD = 480.

44 PDE1 benchmark

Figure 8 shows time measurements for the 3-dimensional ‘red-black’ relaxation benchmark on the
iPSC/860 and plots the elapsed time against number of processors for the automatically produced
code by Adaptor and the hand-written code for the PARMACS message passing environment.
The execution time of the standard Fortran 77 single-processor version (0.250 sec.) is also shown
for comparison. The problem size for the PDE1 measurements was defined as N = 6, which means
64 x 64 x 64 data points.

The use of an overlap area in the PDE1 code does not save any communication, but it saves memory
space and data movements to local temporary arrays. In order to investigate the efficiency of this
solution two series of time measurements have been taken - with and without an overlap area.
The results show that the version with an overlap area is significantly faster for smaller number
of processors. For larger number of processors the effect of the overlap area is negligible.

16

p =6 p=32

HPF system / MPenv. p=1

ADAPTOR 215.0. 1199 893 333 20.6 14.0
xHPF90 11.72 1527 17.88 2088 2580 34.38
PARMACS - 0.857 0529 0302 0171 0.101

Figure 6: Elapsed time in seconds for the execution of FFT1 on iPSC/860, compiled with Adaptor,
XHPF90 and PARMACS. The problem size is defined by LOGN = 16.

4.5 PDE2 and MD1 benchmarks

The efficiency of these codes is extremely poor. This is also due to the fact that the HPF programs
themselves are very inefficient if compared with the sequential Fortran 77 program. Therefore no
time measurements for these benchmarks are given here.

5 Conclusions

51 Recommendations

The HPF parallelisation tools are still in their infancy. They should be given time to develop in
the areas of generality and performance before being used for commercial code parallelisation.
Efficient compilation is highly non-trivial. There are often many candidate choices for the localisa-
tion of individual computations — calculation placement, which creates enough room for various
optimisations. Two principal areas demanding investigation are

17

et T
/ I\
i

f\ﬁmﬁ-—q—
i

TN
T T

Figure 7: Timing diagram for the execution of the FFT1 butterfly phase on 8 processors, compiled
with Adaptor

» Effective strategies for calculation placement;

e Efficient schemes for managing communication, and minimising associated data copying.

It is absolutely necessary to give the user feedback about the generated parallel program from
his code. He should be informed which statements will require communication and whether this
communication is efficient or not. As HPF systems will not implement all possible optimizations
in an early stage, the documentation should demonstrate how to implement efficient programs.

5.2 Compiler vs. run-time system

All of the early HPF systems have their own run-time system that performs operations on dis-
tributed arrays. The more complex the operations of the run-time system are, the less will be the
potential of optimizations for future versions.

integer IND(N)
real A(N), B(N)
'HPFS$ distributed (BLOCK): st e n- B; IND

A = B(IND)

If the above assignment with indirect addressing is translated in one call, it will not be possible
to reuse the communication pattern. A better solution is to compute a schedule for the implied
communication pattern and to use it for sending and receiving values. This will result in three
calls, and the schedule can be reused. When more communications patterns are used, the run-time
system should support the combination of more schedules to one schedule to minimize start-up
times.

5.3 Portability issues

Portability of a program is a property that is most important for users. A first requirement is that
the code runs on all machines of interest. But especially in the context of parallel machines it is
also important that the application runs efficiently on all target machines. It may be necessary to
tune the code where appropriate in order to achieve that.

18

HPE systeny/ MPenv. 'p=1" p=2 p:;L pm:S P16 =232

ADAPTOR % 1 LR e e 0.22 0.15
ADAPTOR(overlap) - (:53" ¢ 0B 2022 0.17 0.14
xHPF90 i “ i 3.5 2.3 1.7

PARMACS - 5375 008000561 500410032

“No results, because the problem size is too large to fit into the local memories.

Figure 8: Elapsed time in seconds for the execution of PDE1 on iPSC /860, compiled with Adaptor,
xHPF90 and PARMACS. The problem size is defined by N = 6.

While the portability of sequential Fortran 77 programs is no longer a real problem on sequential
machines and also on vector machines, the portability of High Performance Fortran programs
will still be a problem for some years. There are many reasons for that, but the most important
from our point of view are listed below:

e HPF is based on Fortran 90. Therefore recoding of existing Fortran 77 applications is
required.

e First experiences have shown that Fortran 90 itself requires very good compilers as Fortran
90 programs are very often slower than their Fortran 77 counterpart when compiled with
the existing early Fortran 90 compilers.

e HPF is a new language and the early HPF systems do not support all features of subset HPF
and hence require some canonical representations. For example, there are several different
sorts of syntax for the distribution directives which are not fully implemented in the early

19

HPF systems under evaluation.

o The task of an HPF compiler is also to translate implicit communication to explicit commu-
nication. Minimization of communication is a central issue for optimizations. However,
different systems have different strategies for generating message passing directives that
makes efficiency and portability very difficult issues.

5.4 The Fortran 90 problem

HPF is intended to use the inherent parallelism of array operations and of parallel loops. In most
cases, this requires recoding of existing applications. Users will be reluctant to recoding in Fortran
90 even if Fortran 90 is as efficient as Fortran 77.

The following example of MD1 shows the typical problem of a Fortran 90 compiler:

NATMEN: {2, 2 t) =
i: CSHIFT (CSHIFT (CSHIFT (NATMCL (:, :, :).
2 ox- DIM=l o Sy S DIM = S DM = 3)

When using serial Fortran 77 this would be coded in such a way that one READ and one WRITE for
every element of the arrays is required. But straightforward Fortran 90 compilers will implement
this array operation by using temporary arrays:

TMP1 fei s Re= CSHERTE (NATMEL S it), SX, DIM =.1)
TMP1 (2, s,)= CSRIFE " (TMEL (2, Saln oy av I M 2
NATMCN (:, :, :) = CSHIFT (TMPl (e AR R I LRt o o (R

This needs at least three READ and three WRITE operations.

Another problem of the array syntax is that due to the blocking of operations the cache of a
processor may not be utilized well. Therefore it is very important for an HPF system to generate
efficient serial code and to avoid temporary arrays and local data movements. All optimization
issues of Fortran 90 compilers are issues of HPF compilers.

Acknowledgments

Amongst those who have helped by discussion and criticism with the preparation of this paper we
would like to mention Dave Watson (NA Software) and John Merlin (University of Southampton)
for their useful and detailed comments. John Levesque, the President of Applied Parallel Research.
Inc. has provided us with the information about their xHPF90 compiler and also ran the GENESIS
HPE benchmarks with it. The Fortran 90D compiler was obtained from the University of Syracuse
with the help of Zeki Bozkus. We have also received very generous assistance from Dirk Roose
(Leuven University) with the access to their iPSC /860 installation and the Express communication
libraries.

References

[1] C.A. Addison, V5. Getov, A.J.G. Hey, R.W. Hockney, L.C. Wolton. The GENESIS Distributed-
Memory Benchmarks. In:]. Dongarra and W. Gentzsch (Eds.), Computer Benchmarks, North-
Holland 1993, pp. 257-271.

20

[2] I. Ahmad, R. Bordawekar, Z. Bozkus, A. Choudhary, G. Fox, K. Parasuram, R. Ponnusamy,
S. Ranka, R. Thakur. Implementation and Scalability of Fortran 90D Intrinsic Functions on Dis-
tributed Memory Machines. Technical Report SCCS-256, NPAC, University of Syracuse, 1993.

[3] Applied Parallel Research Inc. APR’s FORGE 90 Parallelization Tools for High Performance
Fortran (HPF). June 1993.

[4] Applied Parallel Research Inc. FORGE 90: xHPE 1.0 Automatic Parallelizer for High Performance
Fortran on Distributed Memory Systems. User’s Guide, April 1993.

[5] Z. Bozkus, A. Choudhary, G. Fox, T. Haupt, S. Ranka, M.-Y. Wu. Compiling Fortran 90D/HPF
for Distributed Memory MIMD Computers. Technical Report SCCS-444, NPAC, University of
Syracuse, 1993,

[6] T. Brandes. Adaptor: A Compilation System for Data Parallel Fortran Programs. Proc. of
AP'93. Saarbriicken, March 1993,

[7] T. Brandes. Compiling Data Parallel Programs to Message Passing Programs for Massively
Parallel MIMD Systems. Proc. of Working Conference on Massively Parallel Programming Models.
Berlin, September 1993.

[8] G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C. Tseng, M. Wu. Fortran D
Language Specification. Technical Report COMP TR90-141, Rice University, April 1991.

[9] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, V. Sunderam. PVM 3 User’s Guide
and Reference Manual. Technical Report ORNL/TM-12187, Oak Ridge National Laboratory,
May 1993.

[10] V. Getov. 1-Dimensional Parallel FFT Benchmark on SUPRENUM. In: D. Etiemble and J.-
C. Syre (Eds.) PARLE’92, Parallel Architectures and Languages Europe. Lecture Notes in
Computer Science, 605, 1992, pp 163-174.

[11] V. Getov, T. Hey, R. Hockney, I. Wolton. The GENESIS Benchmark Suite: Current State and
Results. Proceedings of 1st Workshop on Performance Evaluation of Parallel Systems - PEPS’93.
Coventry, November (1993) pp 182-190.

[12] R.Hempel. The ANL/GMD Macros (PARMACS) in FORTRAN for Portable Parallel Programming
using the Message Passing Programming Model. User’s Guide and Reference Manual, Version
5.1. GMD, November 1991,

[13] A.]. G. Hey. The GENESIS Distributed-Memory Benchmarks. Parallel Computing, 17(10-11),
1991, pp 1275-1283.

[14] High Performance Fortran Forum. High Performance Fortran Language Specification, Version 1.0.
Technical report CRPC-TR-92225, Rice University, Houston, May 1993.

[15] J. Levesque. FORGE 90 and High Performance Fortran (HPE). Applied Parallel Research, Inc.,
1993.

[16] R. Lovely, A. Marshall, D. Watson. Design Specification of HPF Mapper. PPPE Deliverable
D4.1.a, February 1993.

[17] M. Metcalf and J. Reid. Fortran 90 Explained. Oxford Science Publications/OQUP, Oxford and
New York, 1990.

[18] ParaSoft Corporation. Express Fortran Reference Guide. Version 3.0, 1990.

[19] H. Zima, B. Chapman. Compiling for Distributed-Memory System:s. Proc. of the IEEE. Special
Section on Languages and Compilers for Parallel Machines, February 1993.

21

