Intelligent Parallelization within the Vienna Fortran Compilation
System *

Jan Hulman, Stefan Andel, Barbara M. Chapman, and Hans P. Zima

Institute for Software Technology and Parallel Systems
University of Vienna, Brinner Strasse 72,
A-1210 VIENNA, AUSTRIA

E-Mail: hulman@par.univie.ac.at

Abstract

Current research and development in the area of sofi-
ware support for programming of distributed memo-
ry systems aims to produce compilers for languages
with a single thread of control and exlensions to spe-
cify the mapping of data to the processors. Compilers
for these languages, in particular, High Performance
Fortran (HPF), require much advanced analysis and
must rely heavily on the heurtstic application of pro-
gram transformations; 1t is expected that early imple-
mentations will not handle many kinds of programs
well.

In this paper we introduce an alternative approach
to support programming of such machines, which
makes use of expert system technology. We argue that
a knowledge-based approach to this task will contribu-
te to more powerful and intelligent automatic paral-
lelization systems in the future. We outline the sa-
lient features of a new knowledge-based parallelizati-
on environment being built around VFCS. The basic
design decisions for this environment are discussed
and major components of its first prototype are des-
cribed. The tool is designed not only to support the
compilation of HPF and similar languages, but also
to perform fully automatic compilation of sequential
languages without extensions.

*The work described in this paper was carried out as
part of the research project “Performance Prediction and
eXPert Adviser for Parallel Programming environment”,
funded by the FWF, Vienna, Austria, under the grant
number P9205-PHY. The authors assume all responsibi-
lity for the contents.

1 Introduction

Modern distributed-memory multiprocessor sy-
stems (DMMPs), such as those offered by In-
tel, Meiko, Thinking Machines and NCUBE, are
able to provide their users with a sustained high
performance at comparatively reasonable cost.
Recent systems are scalable to large numbers of
processors; some systems, (e.g. Meiko’s CS-2)
offer both scalar and vector processing nodes.

It is, however, very difficult for a programmer
to utilize the power of these machines. Establis-
hed programming paradigms based on message-
passing require the user to distribute both data
and work explicitly among processors. This task
is often likened to assembly language program-
ming on sequential computers. The program-
ming difficulties are further increased when the
nodes of a system are no longer homogeneous.
As aresult, application development on DMMPs
is a laborious, time-consuming and error prone
process.

A long-term goal of language and compi-
ler research is to make program development
on DMMPs as productive as programming on
conventional sequential architectures. One ap-
proach to this task is to provide appropriate ex-
tensions to existing programming languages, so
that the user can write programs with a single
thread of control and global data references only.
It is then the task of system software to convert

the user program into a form suitable for executi-
on on a DMMP; we refer to this process as paral-
lelization. This programming paradigm promises
not only faster and easier program development,
but also greater flexibility and portability of co-
des.

In this paper we describe the design of an en-
vironment for parallelization which uses expert
system technology in an attempt to improve the
state of the art. Much of the discussion focus-
ses on a specific component of this, a new tool
currently being implemented at the University of
Vienna. This tool, the eXPert Adviser (hereafter
referred to as XPA), is being built using expert
system methodology. XPA cooperates with the
other tools in this environment in an attempt to
both make the parallelization process more auto-
matic and convenient, as well as to improve the
quality of the code generated.

This paper is organized as follows. In Section 2
we give a short overview of conventional approa-
ches to the task of parallelization. We discuss
the limitations and difficulties of this approach,
and in Section 3, we argue for the use of expert
system technology to support the restructuring
of code for DMMPs. We then discuss the par-
allelization environment to which XPA belongs,
and with whose components it cooperates to par-
allelize Fortran codes (Section 4).

The rest of the paper is devoted to the design
of XPA, its solution strategy, and the methods
by which it interacts with the other tools in the
environment. This includes an outline of the ap-
proach it takes to derive data distributions for
the arrays in the source program. We conclu-
de with a discussion of related work and a brief
summary of our approach.

2 'Traditional Approach to

Parallelization

Early parallelization systems for Fortran pro-
grams, such as Superb [25] and the MIMDi-
zer [20], were complex interactive systems which

supported the user in the task of transforming
programs. The user was required to provide a
specification of the manner in which the pro-
gram’s data was to be distributed to the target
machine.

The experience gained with these systems was
formalized in several proposals for Fortran lan-
guage extensions [14, 26], which permitted the
user to describe the desired data distribution.
Cooperation of major computer vendors and aca-
demic institutions has resulted in an agreement
on a basic set of such language extensions, High
Performance Fortran (HPF) [15]. Current rese-
arch and development at a number of laborato-
ries and compiler companies is aimed at imple-
menting the features of this language. In con-
trast to the early systems, which relied on a signi-
ficant user involvement, most of these efforts will
rely entirely upon traditional compiling techni-
ques and advanced analysis and transformation
capabilities.

However, many existing programs will have
to be rewritten to fulfil restrictions imposed by
HPF, or to adapt the code to use constructs that
can be reasonably handled by the parallelizers
which will soon be on the market.

Although in the long term there will be better
hardware support, and both programming me-
thodology will adapt somewhat to the capabi-
lities of parallelizers, and parallelizers themsel-
ves will become considerably more sophisticated,
much work remains to be done before such tools
will be able to adapt a broad range of codes au-
tomatically for efficient execution on a parallel
machine. Both this goal, and that of fully au-
tomatic parallelization (without user specificati-
on of a data distribution), require a deep un-
derstanding of coding practices and techniques,
the usefulness of program transformations, how
they may interact, and how a global strategy for
parallelization may be realized in individual pro-
gram parts. Individual parts of the paralleliza-
tion process may have conflicting aims, and tra-
deoffs may be required. It is currently not well
understood how to apply some of the possible

transformations. A further problem is that ma-
ny of the decisions which need to be require in-
formation which cannot be derived analytically
from the program code alone. This implies eit-
her the continued involvement of the user in the
process, or an environment in which there are
other tools able to derive missing data.

It is not a reasonable solution for the user to
control the actions of a transformation system,
however, because of the knowledge gap invol-
ved: an applications programmer is not likely to
be familiar with the individual transformations,
let alone know how to use them to obtain parallel
code.

This has led us to consider alternative approa-
ches to the problem.

3 The Usefulness of an Expert
System Approach

The task of parallelization, in particular fully au-
tomatic parallelization, is a complex one in which
there are a number of subgoals, which may con-
flict, and between which there are strong inter-
relations. In such situations the expert system
methodology, based upon an explicit represen-
tation and exploitation of the knowledge related
to a particular problem domain, has proved to
be suitable and fruitful in a number of problem
areas (particularly CAD/CAM) [17]. We belie-
ve that a knowledge-based approach will create
a framework for the solution of each of the pro-
blems associated with automatic parallelization.

By applying it to this problem domain, we ho-
pe not only to develop a rapid prototype of a
system which is able to perform fully automatic
parallelization, but also to gain a better under-
standing of this task and good strategies for its
solution. Solution strategies that are well under-
stood can be utilized by future compilers which
employ more traditional methods. It can make
a significant contribution to recognizing major
influences on the selection of strategies for ap-
plication for target architectures. Further, this

approach can help to create an environment in
which it is possible to evaluate the effect of da-
ta distributions and transformations once they
have been applied.

A substantial amount of knowledge was re-
quired to build the current generation of par-
allelizing systems, and it has been incorporated
into them. Unfortunately, the parallelizers do
not explicitly store information about the target
machine’s hardware and software, or about pro-
gramming methodology. Instead, this informati-
on is hard-wired into the program, scattered into
many thousands of lines of code, where it can-
not be easily accessed, modified or extended; nor
can be used to reason about the transformation
process. Such a system is hard to modify - the
implicit nature of the knowledge makes it infle-
xible. For the same reason, a system dedicated
to one machine cannot be easily retargeted.

In view of the rapid evolution of the target
machines, a process in which the very machi-
ne characteristics which have the largest influ-
ence on parallelization strategies are changing, it
seems desirable to make both this knowledge and
the manner in which parameters of the machine
play a role explicit. The explicit representation
of knowledge can have a significant impact on
the system’s portability, and supports the goals
of easy modification and rapid prototyping.

Heuristics and methods of parallelizing speci-
fic constructs are known; they can serve as im-
portant shortcuts and hints. Efficient paralleli-
zation strategies for particular program patterns
are also known from experience and experiments,
and these can be incorporated into an intelli-
gent parallelization system.

4 The Parallelization Environ-
ment

In this section we describe the parallelization en-
vironment by outlining the capabilities of the
existing components. This environment is cur-

rently being extended by a prototype implemen-
tation of the XPA.

The tool around which the parallelization en-
vironment is centered is the Vienna Fortran
Compilation System (VFCS) [8], a source-
to-source translator from Vienna Fortran and
HPF into several dialects of Message Passing
Fortran, extensions of Fortran by a set of con-
structs for explicit message passing. The current
system can target several existing DMMPs, as
well as providing a machine-independent target
in the form of the Parmacs macros. VFCS can
be used as a command line compiler for Vien-
na Fortran and HPF programs, in which case it
applies a standard set of program transforma-
tions and optimizations to the code, or it can
be used as an interactive parallelization system
where the user has full control of the paralleliza-
tion process. It generates code according to the
SPMD (Single Program Multiple Data) model
of computation, in which the arrays of the origi-
nal program are partitioned and mapped to the
target processors. Essentially the same parame-
trized program is then executed on all processors,
whereby non-local data is accessed by compiler-
inserted communication statements.

VFECS derives a good deal of information on
the source code it processes, including internal
data structures such as the syntax tree, flow
graph, call graph, and symbol table, and a pre-
cise dependence information resulting from data
flow and data dependence analysis.

However, many of the decisions which have to
be made during parallelization require knowled-
ge of the program’s behavior at run time which
cannot be derived from the program by analy-
tical methods alone. To support the derivation
of such information a set of performance tools is
incorporated in the parallelization environment.
These performance tools are able to cooperate
with VFCS, and may be invoked from within it.
As we shall see, they will also cooperate with
XPA, for which they represent a further source
of knowledge.

The performance tools of the parallelization

environment are the following.

The Weight Finder [11] is a profiling tool
which derives profiling information by a combi-
nation of static performance analysis and dyna-
mic techniques. It executes a sequential version
of the input program on sample data. It is pos-
sible to determine which profiling information it
collects about a particular program via a set of
parameters.

P3T, a parameter based performance predic-
tion tool [13, 12], may be applied to a (partial-
ly) parallelized program to statically compute a
set of parameters to help evaluate the behavi-
our of the parallel program on a target machine
or to judge the performance impact of a parti-
cular parallelization step. These parameters can
be selectively determined for individual program
constructs and parts of the program. They are
partially target machine specific. The resulting
detailed information can help determine which
parts of a program need to be improved and the
kind of improvement which is needed.

The final performance tool is MEDEA, a
postmortem analyzer of actual program perfor-
mance, which is able to take a trace file generated
using VFCS and perform a statistical analysis
and workload modeling of its run time behavi-
our [21].

We discuss XPA, the final tool in the paralleli-
zation environment, and its interaction with the
remaining tools in the following section.

5 Implementation of XPA and
Integration With Tools

In this section the experimental prototype of
XPA is described. This first version serves as a
flexible and expandable skeleton tool enabling
further experimentation with knowledge-based
support for parallelization of Vienna Fortran co-
des and for rapid implementation (prototyping)
of new ideas.

The skeleton comprises substantial
ponents and it will be gradually extended and

com-

refined according to the future requirements.

5.1 Major Design Principles

XPA is designed as a separate subsystem of
the parallelization system with a precisely spe-
cified interface to other components of the sy-
stem. Among other things, this enables realizati-
on of XPA using a specialized (and independent)
knowledge representation and inference tool.

The important design requirement for XPA is
that there must be a flexible means of commu-
nication between it and both the user and other
parts of the system. This is realized by an in-
teractive interface to the other components
of the system, to the user and to the developer
of the knowledge base. This flexible interface
also forms the basis for gradual evolution of
XPA from a system with intensive user interac-
tion to a largely independent automatic system.
The interactive mode of interface is important
especially for the development and refinement of
the knowledge base in situations where several
or most of the relevant aspects of parallelization
are not yet understood or they are only vaguely
specified. This permits easier experimentation
with the system and the acquisition of the rele-
vant knowledge. As soon as the experimentation
grants yields a fixed and refined procedure for
solving a particular problem, this stable proce-
dure is incorporated into the knowledge base in
the form of rules and the interface to the user is
replaced by the corresponding interface routines,
which gather the necessary information and its
control flow from other parts of the paralleliza-
tion system without user assistance. Based on
this experimentation, the interface routines are
also gradually enhanced.

XPA’s knowledge base contains very different
components and it is expected to grow considera-
bly because of the complexity of the paralleliza-
tion problem domain. A flat organization of the
knowledge base with simple objects will not suf-
fice in this situation. Therefore, the knowledge
base is hierarchically organized, and makes

use of complex, structured objects [19].

5.2 Implementation Environment

The ProKappa Expert System Develop-
ment Environment from IntelliCorp [22] has
been chosen for the XPA implementation. This
professional environment meets our design requi-
rements. We describe some of its most import-
ant features and outline their exploitation in the
framework of XPA:

® both ProKappa and VFCS are C program-
med systems. This greatly facilitates their
integration. In particular, direct access to
internal VFCS data structures and proce-
dures is easily achieved, and C procedures
may be used to realize parts of XPA when
appropriate.

® The ProKappa environment incorporates
a full and effective implementation of the
object-oriented paradigm. ProKappa’s
object system supports natural, flexible,
modular, and expandable representation of
XPA information components, such as pro-
gram constructs (do-loops, statements), da-
ta and control flow information, data depen-
dencies, transformations, performance para-
meters, data distributions, and target archi-
tecture features. The methods and monitors
are used in automatic filling and checking of
values in object slots.

e Active Relations allow specification of
simple local relations among objects on the
slots level. They are convenient in the fra-
mework of XPA to accomplish automatic lo-
cal information distribution and classifica-
tion, mainly for preprocessing of informa-
tion obtained from other subsystems, e.g.
for classification of array access patterns for
a selected do-loop construct from the code
currently being processed.

¢ The shell’s inference engine supports
both forward and backward chaining of

rules, with automatic backtracking and
searching for alternative solutions. The
ProTalk descriptive language allows the
specification of rules in a humanly readable
form. Pattern matching drives the applica-
tion of rules. Rules are grouped into rulese-
ts; the invocation or disabling of each ruleset
can be explicitly controlled. In XPA, the
ruleset mechanism is used to split the large
solution space into several smaller ones, the-
reby reducing the solution complexity and
enhancing modularity. The focus of the sol-
ver is moved according to the current sub-
goal by enabling or disabling particular rul-
esets. The XPA contains the supersets of ru-
les for following solvers: a data distribution
solver, transformation solver, performance
estimator and evaluator, pattern matcher,
special construct solver.

e Developer and End User Interface
tools support not only a comfortable en-
vironment for the creation and testing of
ProKappa applications, but also facilitate
construction of the interactive interface bet-
ween XPA and the user of the parallelization
system.

5.3 The Structure of XPA

A block diagram of XPA and its connections
to the other components of the parallelization
environment is given in Figure 1. The facili-
ties of the ProKappa development environment
(Knowledge Base Management support, the
Inference Engine and Interface Primitives)
are customized to meet the specific requirements
for the knowledge base representation and the
inference process of XPA.

A special communication module is needed to
accomplish the high level of cooperation required
between XPA and the other subsystems of the
parallelization environment. This special in-
terface module comprises not only tools for
the interchange of data, but also includes

Input Target Target
Program Program Computer
le>! Front-End Back-End Vi Sequential :
g Profiling H
oo Menu- \Iy L} T g H
' A B i
i |driven o Performance H
VFCS (———)[Internal Representation CRER Prediction :
4:—-[mer- T
face] (] G Selective
X : Measurement
Transform. Analysis
Subsystem Subsystem Do fiicrnree
: Information Sources |
A R S s
Special Interface
$ Paralleli-
zation
: Knowledge Base i
M ¢! g
“mgi‘mm Domain
; Know-
Inference
Engine ledgc
H ¢ : Base
: Interface ;
> Primitives 3)
End-User Developer
Interface Interface Expcrl

Figure 1: Knowledge-Based Parallelization En-
vironment

mechanisms for a dynamic transfer of con-
trol flow among the cooperating subsystems.
This is crucial for achieving a flexible interactive
access to the transformation system as descri-
bed above. The main purpose of this special in-
terface, however, is to establish consistency and
synchronicity of the contents of the knowledge
base with the internal representation of the pro-
gram in other parts of the parallelization system.

To simplify the special interface module and
to make the data acquisition transparent to the
knowledge base programmer, separate hierarchi-
cal levels of the knowledge base are implemen-
ted. Knowledge-driven data acquisition is

achieved by the fragmentation of data into smal-
ler pieces, whose transfer can be accomplished by
simpler interface routines, and which also makes
an intelligent and complex grouping of the acqui-
red information into structured objects possible.
Note that individual slots of the object descri-
bing some entity can be filled in quite different
stages of the inference over the knowledge base,
corresponding, for example, to the gradual refi-
nement of the solution proposed by the system.

5.4 XPA’s Sources of Information

From a theoretical point of view, the problem of
finding the optimal parallelization strategy for
a particular program can be seen as searching
through a solution space. The solution space for
parallelization is very large. If the system is to
find the optimal solution in a reasonable time,
it needs additional information that can be used
to cut off solution paths which are not promising
as soon as possible. The system has to focus it-
self on the most important solution path. Hence,
the system needs to have effective feedback of in-
formation from other parts of the parallelization
system.

One important source of information already
mentioned are the internal structures of the VF-
CS. From these, XPA can obtain basic informa-
tion about the structure of the program, its con-
trol and data flow, and the results of data de-
pendence, etc.

Since it is the goal of XPA to find an opti-
mal parallelization strategy for a particular input
program, and target computer configuration, the
available information must be specific to a class
of machines and be adaptable to the given con-
figuration. It is vital in this context that XPA
is able to receive or derive information on how a
particular transformation, sequence of transfor-
mations or a specific data distribution will influ-
ence the performance of the code if applied, and
whether it improves or deteriorates the target
program.

The optimal situation is when such informa-

tion can be obtained analytically based only on
internal VFCS structures. Note that the acquisi-
tion of information about potential performance
gain can involve non-trivial computation. Many
known heuristics can be applied. In more com-
plicated cases, the specialized ruleset of the XPA
knowledge base must be used; this is particular-
ly likely when parameters of the target computer
architecture should be taken into account. Whe-
reas a code analysis suffices in many cases, there
exist situations where either an analytical solu-
tion or heuristics are not known, or the precision
of the estimated performance gain is not satisfac-
tory. In these cases, the performance prediction
tools and the selective target code measurements
are required to provide more information to the
inference process.

At our institute, various subsystems of the
parallelization environment have been develo-
ped, or are under development to support both
the user and XPA during parallelization (see 4).
They provide XPA with the following informati-
on:

e sequential profile data for the input
program [11] - besides timing of important
programming constructs, this tool provides
both frequency information on a statement
basis and actual true ratios of conditional

Within XPA, components of

the sequential profiling tool are utilized to

automatically identify the most computati-
on intensive parts of an actual program.

statements.

parallel performance parameters [12] -
include work distribution, the number of da-
ta transfers, the amount of data transferred,
transfer times, network contention and the
number of cache misses. The parameters
are derived without execution of the input
program. These tools use both analytical
methods [13] and simulation [3] to derive
performance related parameters. They are
of particular importance and usefulness for
the evaluation and comparison of different
data distributions, which largely determi-

nes not only the load balance on the exe-
cuting processors but also the amount and
the structure of the communication between
them. For many restructuring transformati-
ons, whose purpose is often to improve data
locality of the resulting node processor code
and to exploit vector capabilities of single
processors of the target machine (e.g. loop
interchange, loop unroll, unroll and jam,
strip mine), the current performance pre-
diction tools are still not very satisfactory.
This is partially due to the significant influ-
ence of the target processor architecture and
to an imprecise knowledge of the vectorizing
and pipelining capabilities of the target no-
de compiler and their impact on program
performance. These features cannot be sim-
ply modeled. One possible solution is to de-
dicate a part of XPA’s knowledge base to
this performance evaluation and use an ex-
tensive set of specialized measurements on
the real target machine.

o selective measuring of target machine
performance - the most precise informa-
tion, generated by the selective instrumen-
tation and successive execution of parallel
code and the postprocessing of the resulting
trace file by statistical methods [21] (inclu-

ding clustering) [7].

5.5 Knowledge Base of XPA

To make the parallelization process more auto-
matic, a knowledge-based parallelization tool has
to include various qualitatively different aspects
of parallelization. The knowledge-based ap-
proach aims to see the parallelization process
as a whole. A necessary precondition for that
is that the knowledge about different parts of
this process are contained in a common base. A
uniform representation is required to allow the
connection of fragmented, partially known solu-
tions of individual parallelization steps, as have
been developed in the past. Moreover, it must
provide a framework for covering both human

e

knowledge of parallelization (parallelization ex-
perience, heuristics, shortcuts) and the precise
analysis and transformation techniques contai-
ned in current parallelizers. Hence, the implicitly
imprecise, and often ad hoc, human solutions can
be automatically improved by exploiting precise
explicit methods, and vice versa.

The knowledge base for automatic paralleliza-

tion consists of the following knowledge clusters:

o configuration description - a description
of the input and output programming lan-
guages and target architecture parameters;
it is supposed that XPA will be used in dif-
ferent programming environments (VFCS,
and other HPF compilers) and that the
target code may be generated for various

target machines; so as a consequence the
knowledge base must incorporate language
specific features such as the data distributi-
on types available with their characteristics,
the language constructs for expressing the
number and structure of processors, and ar-
ray dimension alignment, and target machi-
ne characteristics such as the number of pro-
cessors and its topology, as well as it com-
munication characteristics.

¢ input program features - this knowled-
ge is extracted automatically by the special
interface from the input program’s internal
representation; in some cases it can be ac-
quired by communication with the user (we
will try to reduce communication with the
user, however, by filling the knowledge ba-
se appropriately when possible); the special
interface will have to be developed separa-
tely for different compilers in the environ-
ment; some knowledge can be deduced; so-
me knowledge can be gained by the usage
of special tools: the (Weight Finder) can
be used, for example, to acquire information
about some program fragments (do-loops,
statements, procedures).

¢ performance parameters and related

knowledge - parameters gained from per-
formance prediction tools; these parameters
characterize the input program or current
program version by expressing the expected
performance features of the program under
parallization; the knowledge used in evalua-
tion of these parameters and expressing the
feedback to parallization process is also in-
cluded.

data distribution knowledge - the libra-
ry of array reference patterns with appro-
priate data distribution forcing (of course
in the context of array sizes and the tar-
get machine); the library of code patterns
with target machine optimized codes inclu-
ding data distributions; the knowledge for
intraprocedural and interprocedural distri-
butions propagation.

transformation descriptions - informati-
on on the transformations available for se-
lection in compiler environment (preconditi-
ons for their applicability, summary of their
effect on performance) and their possible
combinations (overall performance of such
combination or refutation of certain combi-
nations of transformations).

state of parallelization process - log
information recording transformations were
already applied and generated recommen-
dations, the current topic in the paralleli-
zed program, which units have been proces-
sed, which integrated phases have been do-
ne, current status of analysis information.

application domain dependent infor-
mation - knowledge about the application
domain to which the input program belongs
can have a significant impact on the rea-
soning process; some applications domains
can be characterized by special computatio-
nal patterns often used in algorithms and by
the similar structure of data used in them
(e.g. symmetric matrices) and where there
is experience in parallelizing the programs

belonging to the domain, this knowledge is
incorporated in the knowledge base.

¢ general strategy knowledge - is based on
known configuration of the target machine,
the input language and transformation sy-
stem features. Incorporating such knowled-
ge can drastically decrease a search space
of the solution. Also already known global
heuristics (or strategies) for the certain con-
figuration can be applied directly.

The knowledge concerning parallelization do-
main takes two forms: objects and rules. Rough-
ly speaking, the objects describe the current
state of the parallelization process, and the rules
describes relations among objects, or they cor-
respond to very elementary actions for changing
objects.

Based on the given parallelization goal and in-
formation stored in the knowledge base, the infe-
rence engine performs reasoning over them. No-
te that the inference over the knowledge base is
the most important mechanism for achieving so-
lutions. Upon the strength and flexibility of the
inference engine features depends the total per-
formance of the solution searching.

5.6 Solution Flow

A functional view of the steps taken by XPA du-
ring the parallelization session is shown in Figure
2,

The initial data acquisition module first runs
the VFCS Front End on the input program. Se-
quential profiling is then performed. After these,
the internal representation of the source program
is available, the call graph has been constructed
and data flow and dependence analysis has be-
en computed. The abstract syntax tree has been
annotated with profiling results. Based on these
internal VFCS structures, the XPA creates its in-
itial internal program representation in the form
of interconnected objects. We note that items of
information from VFCS are not simply copied:

Sequential program

Initial data
acquisition

= .ass‘iﬁc U(\n,:mnll:niu
sorung, and selection ol
for improvement (ag

Special constructs
solver

un{}idu(es

da

i
(sl

Pattem replace-
ment solver
Replacement with
oplimized code

Transformation

[

Data distribution
solver

Performance
Information

collecting
Restoring Program annotation
working Transformations

version Save working version

Probe version
generation
Measurement speci-
fication, Compilation

Run, measurement,
statistics

application

Parallelization
Target compilation

I

Parallel Program

Initial parallelization
Performance prediction

Figure 2: XPA - a functional view

they are preprocessed to achieve the required le-
vel of abstraction. The resulting profile infor-
mation is also included in objects. When ready.
the object structure is scanned to find parts sui-
table for successive improvement. This scanning
is accomplished by the use of pattern matching.
The selected parts are then classified according
to the solver suitable for their further processing,
and they are annotated with the expected per-
formance gain (computed or estimated). Thus
obtained, candidates for improvement are sorted
according to an estimate of their contribution to
the performance of the complete program. The
candidates are then submitted in this order to
the appropriate solver.

Figure 2 shows four solvers. Our current work
is concentrated on the first two: the transfor-
mation solver and distribution solver. The other
two are included for the sake of completeness.
The special constructs solver is expected to be
dedicated for processing of special constructs:
VECS has routines for dealing with irregular
computations [6], and a number of distribution

10

methods which are considerably more complex
than the widely understood block and (block-
cyclic) distributions, such as those for distribu-
ting work spaces [16] . Analysis of their use is
deferred to this solver. The pattern replacement
solver will replace specific recognized code pat-
terns with pre-optimized and parametrized code
for the target machine.

It is the task of the transformation solver to
find an optimal sequence of code restructuring
transformations, and the task of the data distri-
bution solver is to generate the best data dis-
tribution(s) for the input program. The decisi-
ve criterion is the target program’s performance.
Although the diagram shows these solvers as se-
parate modules, in reality there is a strong inter-
relation between them, since achieving the op-
timal solution requires a sophisticated matching
of transformations and data distributions. Each
solver represents an iterative process (reasoning)
over the knowledge base. A more detailed discus-
sion of the solvers exceeds the framework of this

paper.

As explained in the previous section, feed-back
from tools for sequential profiling, performance
prediction and selective measurements by the ap-
propriate module is often necessary. Note that
the preciseness of performance information for
the parallel program increases from the first of
these tools to the last. But the cost which must
be paid for such precision is the increasing com-
putational time taken to gather the information
and the complexity of the task. A decision to
perform performance prediction or make selec-
tive measurements must be made carefully and
sparingly. XPA should use these tools seldom in
an actual parallelization, compared to the other
sources of information, and only when the state
of its solution flow strongly requires information
of this kind to proceed with the solution, and
the required performance parameter cannot be
reasonably obtained or deduced from available
information.

5.7 Automatic Data Distribution wi-
thin XPA

The data distribution process can be divided into
the following four subgoals:

e finding the relative locations of different ar-
rays elements through dimension alignment

e finding the appropriate number of proces-
sors of target machine on which the program
will execute

¢ finding their structure reflecting the way
these processors will be accessed

e finding the appropriate mapping of the ar-
ray elements to processors of the parallel
machine

The aim of automatic data partitioning is to
reach the automatical solution of above mentio-
ned subtask and insertion of appropriate Vien-
na Fortran constructs into the input program to
express the solution of these subtask. The solu-
tion should exhibit the acceptable performance
of resulted parallelized program. The method by
which the data are distributed largely determi-
nes the process structure of the parallel program
and in particular, the size of the workload for
each process and the communication required;
hence, the data distribution also determines the
overall performance of the parallelized program.
Some aspects of the data distribution are known
to be solved analytically [10]; the computational
cost of solving more general cases is prohibitive.

The automatic data distribution within XPA
is performed in several phases. The first phase is
dedicated to the automatic array dimension ali-
gnment. This and next phase is performed on the
important program parts (found with the help of
serial profiler). When contradictory align prefe-
rences for the alignment of some array dimension
in some program part occur, the tool chooses the
most appropriate one. The library of data ref-
ference patterns with the alignment preferences
forced by these references is used.

11

The second phase is focused on finding the ap-
propriate types of data partitioning and their spe-
cifications for arrays in these important program
parts. Array sizes and communication charac-
teristics of different communication kinds which
are accessable on the target machine are taken
into account.

In the third phase, the data distributions
are propagated between the individual program
parts and throughout the call graph [9]. This
step have to solve the potential conflicts arising
when different data distributions for some array
have been found in different program sections.
Array redistribution is also considered as a me-
thod for solving conflicts during the inter and
intra-procedural propagation.

In the fourth phase data distributions found
are evaluated and tuned. The information obtai-
ned from performance prediction tool or parallel
profiler is used to find the program parts and
data references that were the sources of poor
decisions in the previous phases; that allows a
more intelligent search for the cause of poor de-
cisions and a corresponding improvement in the
system’s behaviour.

6 Related Work

Knowledge-based techniques have previously be-
en applied in few systems which restructure code
for vector or parallel machines.

The expert adviser EAVE was developed to
assist in the transformation of program for input
to the IBM 3090 VF; it also looks for patterns
within the code, and has rules telling it how code
can be transformed to obtain an equivalent form
that can be efficiently vectorized [2].

Wang and Gannon [23] proposed an expert sy-
stem for the hierarchical parallelization of pro-
grams to run on different multi-processors archi-
tectures. The proposal concentrates on the for-
mal representation and specification of the know-
ledge about the transformation process. Wang
has constructed an advanced knowledge acquisi-
tion tool in Prolog for collecting knowledge about

various target machines architectures [24].

The experimental InParS system [1] imple-
ments heuristic state search algorithm A*. It is
applied to automatically generate the sequence
of transformations for optimal vectorization on
IBM 3090/180S VF machine. A simple perfor-
mance prediction is used to drive the search pro-
cess.

The rule based transformation system ParTool
[5] for semiautomatic SPMD code generation is
being developed at the Delft University of Tech-
nology. This system provides advanced pattern
matching, but unfortunately lacks a flexible con-
trol mechanism for application of the rules.

7 Conclusion

In this paper we have discussed a knowledge ba-
sed approach to parallelization and have intro-
duced the design rationale and features of XPA,
a tool which is being developed as part of an ad-
vanced parallelization environment for DMMPs,
whose core is the VFCS parallelizer. XPA is de-
signed to interact closely with other tools of the
environment to support the automatic paralleli-
zation of data-parallel numerical programs writ-
ten either in Fortran, Vienna Fortran or HPF.
We hope that its development will not only im-
prove our understanding of the techniques which
a parallelizer can effectively employ, but also
bring us a step closer to full automatic paralle-
lization. Further, it is intended that this system
be relatively easy to adapt to different architec-
tures, so that efficient parallelizers for emerging
systems with different architectural parameters
can be quickly constructed.

This system makes extensive use of knowledge-
based and performance analysis techniques.

References

[1] Al-Ayyoub A., Yazici A.:"Knowledge-Based
Program Parallelization”, Computer Sci-

2]

8]

[4]

[7]

[9]

ence Department, Bahrain University, Isa
Town, February 1992, 16 pp.

Bose P.: “Interactive Program Improve-
ment via EAVE: an Expert Adviser for Vec-
torization”, Proc. of the Int. Conf. on Su-
percomputing, St. Malo, July 1988, pp. 119-
130.

Blasko R.: "Parametrization and Abstract
Representation of Parallel Fortran Pro-
grams for Performance Analysis”, Proc. of
the AICA’93 Conf., Parallel and Distri-
buted Architectures and Algorithms, Sept.
1993, Gallipoli-Lecce, Italy, pp. 75-91.

Blasko R., Zima, H.: ”Performance Pre-
diction and Expert Adviser for Automatic
Parallelization of Fortran Programs”, to ap-
pear.

Breebaart L.C., Paalvast E.M., Sips H.J.:
”A Rule Based Transformation System for
Parallel Languages”, In: Proc. of Third
Workshop on Compilers for Parallel Com-
puters, Vienna, Austria, ACPC/TR 93-8,
July 1992, pp. 13-21.

Brezany P., Sipkova V., Das R., Saltz
J.: "Compilation of Vienna Fortran Forall
Loops”, submitted to Supercomputing’93,
Portland, Oregon, 1993.

Calzarossa M., Serazzi G.: "Workload Cha-
racterization: A Survey”, Proceedings of
the IEEE, 1993, to appear.

Chapman B., et al: "VIENNA FORTRAN
Compilation System. Version 1.0. User’s
Guide”, Department of Statistics and Com-
puter Science, University of Vienna, Au-
stria, January 1993, 192 pp.

Chapman B., Fahringer T., Zima H.: ”Au-
tomatic Support for Data Distribution on
Distributed Memory Multiprocessor Sy-
stems”, Sixth Annual Workshop on Langua-
ges and Compilers for Parallel Computing,

[11]

[12]

[13]

[14]

[16]

[17]

[18]

Portland OR, August 1993, Springer Verlag
LNCS, to appear

Chen M., Li J.: ”Optimizing Fortran
90 Programs for Data Motion on Massi-
vely Parallel Systems”, Technical Report
YALE/DCS/TR-882, Yale University, Ja-
nuary 1992,

Fahringer T.: “The Weight Finder - An
advanced Profiler for Fortran Programs”,
Proc. of AP’93, Saarbriicken, Germany,
1993.

Fahringer T., Blasko R., Zima H.P.: "Au-
tomatic Performance Prediction to Sup-
port Parallelization of Fortran Programs
for Massively Parallel Systems”, The Sixth
ACM Int. Conf. on Supercomputing, Wa-
shington D.C., July 1992, 10p.

Fahringer T., Zima H.: A Static Parameter
based Performance Prediction Tool for Par-
allel Programs”, Proc. of the 7th ACM In-
ternational Conference on Supercomputing,
Tokyo, Japan, July 1993.

G. Fox, S. Hiranandani, K. Kennedy, C. Ko-
elbel, U. Kremer, C. Tseng, and M. Wu:
"Fortran D language specification”, Depart-
ment of Computer Science Rice COMP
TRY0079, Rice University, March 1991.

High Performance Fortran Forum: High
Performance Fortran Language Specificati-
on, Version 1.0”, Rice University, Houston,
May 1993

Gerndt M.: "Parallelization of Multigrid
Programs in Superb”, Technical Report
ACPC/TR 90-6, Austrian Center for Par-
allel Computation, October 1990.

Gupta A., Prasad B.E. (eds.): "Principles
of Expert Systems”, IEEE Press, 1988.

Harandi M.T., Ning J.Q.: ”Knowledge-
Based Program Analysis”, IEEE Software,
January 1990, pp. 74-81.

13

[19]

[20]

[21]

[24]

[25]

[26]

[27]

Liebowitz J., De Salvo D.A. (eds.): ”Struc-
turing Expert Systems”, Prentice-Hall Inc.,
1989.

"MIMDizer User’s Guide, Version 8.07,
Applied Parallel Research Inc., Placerville,
CA., 1992.

Pantano M., Blasko R., Moritsch H., Fah-
ringer T.: "VFCS-MEDEA Integration. In-
strumentation. Parameters and Events Spe-
cification.”, Institute for Software Technolo-
gy and Parallel Systems, University of Vi-
enna, Austria. Internal report, 1993.

"ProKappa User’s Guide. Version 2.0”. In-
telliCorp, Inc., Publ. Number PK2.0-UG-2,
October 1991.

Wang K.Y., Gannon D.:. ”Applying Al
Techniques to Program Optimization for
Parallel Computers”, Hwang. K., De-
Groot D. (Eds.): Parallel Processing
for Supercomputers and Artificial Intelli-
gence, McGraw-Hill Pub. Company, 1989,
Chap.12., pp.441-485.

Wang K.Y.: "Intelligent Program Optimi-
zation and Parallelization for Parallel Com-
puters”, Tech. Rept. No. CSD-TR-91-030,
Department of Computer Science, Purdue
University, April 1991.

H. Zima, H. Bast, and M. Gerndt. ”Superb:
A tool for semi-automatic MIMD/SIMD
parallelization”, Parallel Computing, 6:1—
18, 1988.

H. Zima, P. Brezany, B. Chapman,
P. Mehrotra, and A. Schwald: ”Vienna
Fortran — a language specification”, ICASE
Internal Report 21, ICASE, Hampton, VA,
1992.

Zima H., Chapman B.: ”Compiling for
Distributed-Memory Systems”, Proc. of the
IEEE, Special Section on Languages and
Compilers for Parallel Machines, February
1993.

