
Interprocedural Array Alignment Analysis*

E r w i n L a u r e 1 B a r b a r a C h a p m a n 2

1 Institute for Software Technology and Parallel Systems
2VCPC, European Centre for Parallel Computing at Vienna

University of Vienna, Liechtensteinstrasse 22, A-1090 Vienna, Austria
i erwin@par, univio, ac. at 2 Barbara. ChapmemQvcpc. univie, ac. at

A b s t r a c t . The specification of efficient data distribution schemes is one
of the major tasks in programming DMMPs with data parallel languages.
Although there are no optimal strategies for generating such data distri-
butions, several heuristics have been developed to provide some support
to the user. We presented an overview of an automatic alignment anal-
ysis tool elsewhere, which is able to automatically generate alignment
proposals for the arrays accessed in a procedure and thus simplifies the
data distribution problem. In this paper we extend our previous work to
interprocedural analysis taking into account dynamic realignment. This
feature is essential for applying alignment analysis to real programs.

1 I n t r o d u c t i o n
When migrating applications to distributed memory architectures, da ta locality
is crucial for performance. Under the da ta parallel programming paradigm, the
user must select a distribution of the program's da ta to the target machine which
ensures good da ta locality and balances the work load. High level languages such
as HPF[5] may use this information directly to generate code. But it is hard to
determine an appropriate data distribution. One of the major approaches to this
task consists of detecting suitable alignments between dimensions of arrays in the
user code in order to reduce communication cost due to array cross-references.

The specification of appropriate alignments also alleviates the task of specify-
ing da ta distributions in the sense that the aligned array inherits its distribution
from the source array.

In [12] we presented a tool performing intraprocedural al ignment analysis
automatical ly within the framework of the VFCS compiler. This tool is able to
solve both the inter- and intradimensional problem using a common problem
model and efficient heuristic algorithms.

In this paper we extend our previous work in order to handle interprocedural
problems allowing dynamic solutions. The capabili ty to manage interprocedural
problems is one of the key requirements to make the tool applicable for real
programs. Unfortunately, the problem of dynamic alignment was proved to be
NP-complete by Kremer [10]. We therefore propose to make use of an heuristic
algorithm that works on an internal problem representation (the Alignment Call
Graph) and uses greedy techniques that make the algori thm applicable to real
world programs. Moreover, our algorithm minimizes the costs that are associated
with realignment by carefully choosing which arrays have to be realigned. A
simple example is presented in Section 5 that illustrates the main benefits of our
heuristics.

* The work described in this paper was supported by the Austrian Science Fund FWF
(SFB F011 "AURORA") and the European Union (ESPRIT project 23502 "FITS").

748

Rela ted Work The pioneering work in the field of automatic alignment and,
subsequently, automatic data distribution was done by Li and Chen [14] and
Manish Gupta [8], whose results strongly influenced our analysis. Instead of us-
ing heuristics to solve the alignment problem Kremer [9] proposed to use 0/1
integer programming techniques. The approach of Gareia et al. [6, 7] introduces
a new framework combining both alignment and data distribution analysis. Both
approaches provide dynamic solutions but are restricted to intraprocedural anal-
ysis. Other researchers such as [4, 15, 3] deal with the alignment problem by
solving matrix equations based upon the array access patterns. This approach
seems to be more restricted than ours and its execution can moreover be very
time consuming, thus preventing the analysis of larger applications. Chatterjee
et al. [2] have developed algorithms in the field of dynamic programming. Ning et
al. proposed an algorithm for dynamic alignment within the context of HPC [15].
Although their work is restricted to dynamic intraproeedural solutions, it has
inspired our Procedure Clustering Algorithm. In some of the research mentioned
above dynamic solutions are considered, however, they are limited to intrapro-
cedural analysis. Ayguade et al. presented in [1] a research tool which is able
to generate interprocedural solutions. However, exhaustive search techniques are
applied thus preventing the analysis of bigger programs.

The remainder of this paper is organized as follows: The basic concepts used
for alignment analysis are introduced in Section 2. Section 3 gives a brief review
of our previous work on intraprocedural analysis. The problem of interprocedu-
ral analysis is handled in Section 4. Finally we present an application example
showing the main features of our interprocedural algorithm and we end with
some remarks on this work.

2 B a s i c C o n c e p t s

In t r ap rocedura l Analysis Our approach to intraprocedural alignment analy-
sis is to analyze array references of statements inside the loops of the examined
program unit (procedure).

Let L denote a loop and S an assignment statement within L. Let furthermore
a and b denote references to arbitrarily dimensioned arrays A and B in S.

Information useful for the alignment problem can be gathered by analyzing
each pair of these subscript expressions.

For modeling the alignment problem we use the Component Alignment Graph
(CAG) framework first introduced by Li and Chen [14]. The CAG is an undi-
rected weighted graph. A node represents a dimension of an array which is
referenced in the examined unit. If the alignment analysis detects a preference
for aligning two array dimensions, the corresponding pair of nodes in the CAG
are connected by an undirected weighted edge, called alignment edge (e). An
alignment edge is attributed with information about both inter- and intradi-
mensional preferences (cf. Section 3). The solution of the alignment problem is
represented via the Alignment Sets (S), also introduced by Li and Chen [14].
S = 81, ..., $~(d _~ 1), where d is the number of dimensions of an array with the
highest dimensionality in the analyzed unit. All nodes of the CAG are matched
to S such that all nodes belonging to 8i E S express a preference for alignment
(cf. Section 3).

In the remainder we use the following notation: a node of the CAG is de-
noted by the capitalized name of the array, subscripted with the dimension, and

749

alignment edges are denoted by e(node,node); e(A1, B2) therefore represents the
edge between the first dimension of array A and the second one of array B.

I n t e r p r o c e d u r a l Ana lys i s Let P denote a program. P is a set of n _> 1 pro-
cedures denoted by p corresponding to Fortran program units. The call graph G
of P is a directed graph G = (N, E), where there is a one-to-one correspondence
between N and P, and (p, q) E E iff procedure p contains a call whose execution
may result in the direct activation of procedure q. Procedure p is called the caller
and q the callee. The set of all calls occurring in the program text of p resulting
in a direct activation of q is denoted by ealls(p,q). We assume that G is acyclic.

Let formal(q) denote the set of formal parameters of q and global(q) the set
of global variables accessible in q. If during a call an array A is bound to an
formal array B E formal(q) we denote this binding by b(A, B).

Let G be the call graph of P. The A l i g n m e n t Cal l G r a p h (A C G) is an
exact copy of G holding additional information for alignment analysis.

Each procedure p C ACG is linked to its CAG and Alignment Sets computed
during the intraprocedural phase. Moreover, each edge of the ACG is weighted
with the frequency measure of how often the call occurs. Note, that for sake
of exact analysis we have to distinguish between the absolute call frequency
(aef), which is the overall frequency measured during the program execution,
and the relative call frequency (rfc), which is the average call frequency during
one instance of the caller.

All further actions during the interprocedural analysis use the ACG only,
and do not affect the program's call graph G. Thus, when applying procedure
clustering (cf. Section 4.2) a node in the ACG may refer to a set of nodes in G.

3 Intraprocedural Analysis
The Intraprocedural Analysis is the kernel of our tool. For each program unit
the CAG is constructed and the (intraprocedural) alignment problem is solved
using a heuristic algorithm. The solution is represented in the form of Alignment
Sets. In this section we give a brief overview of the problem formulations and
the solution algorithms. A comprehensive discussion can be found in [12].

The Intraprocedural Alignment P r o b l e m The intraprocedural alignment
problem is to identify alignment preferences between two array dimensions by
analyzing their reference patterns. For each pair of array dimensions which have
an alignment preference an alignment edge is constructed in the CAG (cf. Section
2). This edge is annotated with both, inter- and intradimensional information:

The interdimensional information is a weight which reflects the communi-
cation effort arising when the two array dimensions are not aligned. Since we
do not know anything about the actual distributions and processor numbers at
analysis time, we have to apply strong worst case assumptions reflecting the
compiler's communication optimization and some machine specific properties.
We use Equation. (1) for computing the weight where the necessary data is sup-
plied by a sequential profiler:

w(e) = (tt * ca + s t) , c f (1)

w(e) symbolizes the weight of edge e, tt the transfer time, ca the amount of
communication, st the startup time and finally cf the communication frequency.

750

For modeling intradimensional preferences we defined the concept of locality
consisting of the locality type and the locality relation. The locality relation con-
sists of the tuple (multiplicator, constant offset), where the multiplicator denotes
strides within the access patterns and the constant offset a possible shift. The
locality type gives concise information about the locality relation and can be
perfect, constant or invariant.

The locality can give useful hints for choosing the appropriate alignment
functions 2 and also helps us handling multiple occurrences of the same align-
ment preferences (this means that references to the same a.rrays are alignment
preferring in distinct parts of the code). Furthermore, competing intradimen-
sional alignment preferences can be detected.

Solving the Intraprocedural Problem As proposed by Li and Chen, the
Alignment Problem can be solved by matching each node of the GAG to a num-
ber of sets (the number being equal to the highest dimensionality of all arrays
handled), with the restriction that no two nodes of the same array may belong to
the same set, while minimizing the weight of all edges between nodes belonging
to different sets. These sets are called Alignment Sets. The goals of this proce-
dure are obvious: when matching nodes (via Alignment Sets), they should be
distributed in the same manner, certainly according to their intradimensional
preferences, thus avoiding communication effort due to cross references. Only
those edges between nodes in different sets symbolize unavoidable communica-
tion.

Unfortunately the matching problem as stated above has been proved to
be NP-complete in [14], however Li and Chen presented an heuristic algorithm
which reduced the problem to a bipartite-graph matching problem. We make
use of an adapted version of this algorithm that takes also intradimensional
preferences into account. A detailed description can be found in [12].

The Alignment Sets are arbitrarily numbered in order to distinguish them
and can be represented as an ordered list. All nodes belonging to the same set
should be aligned with each other, where the precise alignments will be based
upon the intradimensional information with which each node is annotated.

The information contained in an Alignment Set can be directly used to gener-
ate alignment directives in HPF-like languages. When generating the alignment
directives, we consider an array with highest dimensionality to be the alignment
source array and align all other arrays with it. Subsequently, the user only has
to specify the distributions for this single alignment source array.

The GAG and Alignment Sets are stored and linked to the respective node
in the ACG for the interprocedural analysis.

4 Interprocedural Analysis

In this section we extend our model to interprocedural analysis in order to enable
its application on full programs. Within this context the possibility of changes
in the alignment schemes via realignment is worth to be considered.

Interprocedural alignment analysis which considers redistribution between
procedure boundaries can be seen as one kind of dynamic alignment, where
realignment is allowed at specific points in the program. In odr approach we

2 The main alignment functions under consideration are shift, stride and reflection.

751

currently do not handle intraprocedural phases and allow realignment only at
procedure boundaries. This simplifies the problem and allows us to study the
effectiveness of our approach. Nevertheless, our model can be expanded to handle
intraprocedural phases as well and this will be considered in the future. Our
approach assumes that the caller's alignment scheme is restored after execution
of the return of control to it.

4.1 P r o b l e m F o r m u l a t i o n

The intraprocedural analysis phase results in an ACG (cf. Section 2) where each
unit is a t t r ibuted with the CAG and the Alignment Sets, representing the prob-
lem model and its static solution, respectively. The goal of the interprocedural
analysis is to combine as many units as possible into unit clusters - where within
such a cluster the alignment scheme stays invariant - so that the alignment cost
within a cluster and the realignment cost between clusters are minimized. The
alignment cost and the realignment cost are defined as follows:

A l i g n m e n t C o s t The cost of an alignment solution can be defined as the accu-
mulated weight of all alignment edges connecting nodes in different Alignment
Sets plus the weight of all edges with a locality relation which is not observed. In
the following we denote the cost of solution 8 by ac(8). The full mathemat ica l
formulation can be found in [13].

R e a l i g n m e n t C o s t For a call c E calls(p, q) the realignment cost can be com-
puted by comparing the alignment solutions of program unit p with those of
program unit q. If we find differing solutions for an array, we have to assume
that the array must be redistributed. Note that we only compute the cost for
one execution of a call, which means that the result must be multiplied with the
call frequencies to get a comparable measure (cf. Section 4.2). We make worst
case assumptions, i.e. that the whole array has to be comnmnicated.

The major problem within this context is the specification of the arrays to
be realigned. Recall that alignment is a symmetr ic relation between two arrays,
thus in the case of differing alignment schemes we could realign either array.

Let Sp denote the Alignment Sets of p and Sq the Alignment Sets of q, re-
spectively. We model the realignment problem in a manner similar to the inter-
dimensional alignment problem: a biparti te graph is constructed whose columns
are composed of Sp and Sq, respectively. There is a node for each Alignment Set.

Let A C Sp and B E 8q be two arrays bound during the call (b(A, B)). Each
pair of nodes of the biparti te graph whose associated Alignment Sets contain the
same dimensions of A and B are connected with an undirected, weighted edge.
The same holds for arrays within the intersection of global(p) and global(q).

The edge is weighted with the cost of realigning array A (array realignment
cost arc) which is according to Equation (1):

arc(A) -- (tt * arraysize(A) + st) * 2 (2)

Note that the realignment cost is multiplied by 2, since realignment occurs on
the call and on the return.

The solution of the realignment problem can now be formulated as a matching
problem for this bipart i te graph that seeks the min imum accumulated arc for
every call c C calls(p,q). The output are the total realignment costs between

752

procedure_clustering_alsorithm(ACG);
{unmark_edges(ACG);
.hile (3 unmarked edge) {
/* take the t.o nodes (p.q) connected by the unmarked edge with the
* highest absolute call frequency and their CAGs (CAGI, CAG2) as
* .ell as their solutions (Sets1,Sets2) and merge the CAGs */

CAGm = merge_CAG(CAGI.CAG2);
Setsm = heuristic_algorithm(CAGm);
/* compute the cost */
cost_merged = ac(Setsm);
cost_unmerged=ac(Setsl)+~cqcalls(p,q)(rcf(c)*(ac(Sets2)+rc(Setsl,Sets2,c)));
if (!(cost_merged > cost_unmerged))

Update_ACG(ACG,nodel,node2,CAGmjSetsm);
else

/* both nodes retain their CAGs and Solutions */
mark_edge(); }}

Fig. 1. Procedure Clustenng Algorithm

$v and Sq for every call c 6 calls(p, q), denoted by rc(Sp, Sq, c), as well as a
list of all arrays that have to be realigned. Note, that this list identifies those
arrays that lead to minimized realignment cost. Again, the full mathematical
formulation can be found in [13].

The cost model is kept quite simple (e.g. network contentions that are likely
to occur on redistribution are ignored), but it can easily be substituted with a
more accurate one if required. Moreover, our analysis is intended to become a
real automatic data distribution tool in future, which combines alignment and
distribution analysis. An extension of our model towards this analysis can be
achieved by substituting the cost model with a more appropriate one reflecting
also the distributions.

4.2 The Procedure Clustering Algorithm
Since finding an optimal solution for dynamic alignment schemes was proved to
be NP-complete by Kremer [10] we use a greedy algorithm to solve the procedure
clustering problem heuristically. Our algorithm was inspired by the Clustering
Algorithm developed by Ning et al. [15]. They developed their algorithm for the
clustering of program phases defined as loop nests and did not handle interpro-
cedural problems. We found that this algorithm can be successfully extended
and modified for interprocedural problems.

An outline of our Procedure Clustering Algorithm (PCA) can be found in
Figure 1. The algorithm needs one pass over the ACG and tries to combine those
procedures which are connected by a maximum weighted edge (absolute call
frequency) first. It is important to analyze those procedures first, since possible
realignment cost will be incurred at each instance of the call.

The next step is the merging of two CAGs, which is described below. The
heuristic algorithm (cL Section 3) is used to compute the solution of the merged
CAG, and the cost of this solution is compared with the cost of the original
solutions plus the realignment cost. Note that the alignment cost of the callee
and the realignment cost are multiplied by the relative call frequency.

Depending on which result is better, the two nodes for the procedures either
remain separate and retain their original CAGs and solutions or they are merged
and the ACG is updated accordingly.

753

M e r g i n g two C A G s The central task of the PCA is the merging of two CAGs
along a procedure cM1. This merging can be seen as a kind ofinline expansion [16]
on the level of the GAG. Due to Fortran memory management, several problems
arise. While we can handle common blocks and parameter passing, some specific
Fortran features such as equivalence and reshaping are not considered. Note
that the locality relation plays an important role in this phase, since it is used to
model changes in the intradimensional alignment during a procedure call. The
locality of the callee nodes is updated with the locality of the equivalent caller
nodes using an adapted locality propagation algorithm (the algorithm can be
found in [11]).

Another important issue is the weight with which the edges of both the orig-
inal CAGs and the merged CAG are annotated. Remember that the intrapro-
cedural step uses absolute frequencies for the weight calculation. However, if we
are looking at two procedures isolated from the program, we should not take
into account calls from other procedures. Thus, we use relative weights (rw) for
all CAG edges which indicate the weight for one instance of the procedure.

The merging algorithm first generates a copy of the caller's CAG, in which
the callee~s CAG is inserted. For each call the dummy arguments are substituted
with the actual ones according to their bindings and their locality relations are
propagated. The weights of the callee's edges are multiplied with the relative
frequency of the call and all nodes and edges are inserted into the merged CAG
using the concepts of our intraprocedural analysis, especially where multiple
aligmnent occurrences and intradimensionat conflicts are concerned. The formu-
lation of the algorithm can be found in [13].

Note that both the caller and the callee in this context refer to a node in the
ACG, hence they may represent more than one procedure.

U p d a t i n g t h e A C G If the PCA decides to merge the alignment schemes of
two procedures we have to update the ACG. The ACG node of the callee is
merged into the node of the caller which now represents a cluster of procedures.
All incoming ACG edges of the callee node are redirected to its new node as well
as all the leaving ones; edges that are now within a node can be deleted. The
relative frequencies of all the leaving edges have to be updated (multiplied) with
the frequency of how often the callee is called directly by the caller. Finally, the
original node of the callee is deleted from the ACG.

After the execution of the PCA the ACG holds one node for each cluster
annotated with tile CAG and the Alignment Sets, and a pointer to G for each
procedure which is a member of the cluster. The alignment schemes stored in
the ACG node can easily be propagated to the procedure's source code and re-
alignment is only necessary along calls between procedures belonging to different
clusters, where the optimal choice of the arrays to be realigned is specified.

Note that all merging actions only affect the ACG, not G. Furthermore our
algorithm requires a procedure to have only one alignment scheme. Hence pro-
cedure cloning is not allowed.

In the worst case our algorithm needs to merge and analyze the CAGs and
solutions of every pair of procedures connected by an edge in ACG. Thus, the
complexity is directly proportional with the number of edges in the ACG. For-
tunately, in the typical case it will not be necessary to analyze each edge on
its own since we combine nodes in the ACG if we decide to cluster them. In

754

~c cx~

4

Fig. 2. ACG for shallow Fig. 3. Partially merged (1) Fig. 4. Partially merged (2)

the following section this is motivated by an application example. Although it
is simple we believe that this is typical over a large fraction of applications.

5 A p p l i c a t i o n E x a m p l e s

In this section we illustrate our interprocedural algorithm by considering the
shallow benchmark from the xHPF benchmark set. This code is a straightforward
weather prediction benchmark program that uses finite differencing.

The ACG of shallow can be seen in Figure 2. In this diagram, the boxes
representing those subroutines in which alignment preferences can be found have
been emboldened. Note that the time measurement, procedures do not provide
any information about alignment, as can be expected. The edges of the call graph
are annotated with the absolute call frequency (acf).

First, the PCA tries to merge procedure CPUTIM with CALCl, CALC2, and
CALC3. This merging is trivial, since CPUTIM has no CAG at all and the other
procedures are not mutually connected. We can therefore combine these four
procedures into one cluster (cf. Figure 3). Note that the sinks of some edges
from procedure MAIN are now within the cluster. Thus, in the next step, which is
the merging of MAIN and CALCI, all the other calls from MAIN to any procedure
belonging to the same cluster as CALC t are considered simultaneously.

At this step, we find that there are no conflicts in the alignment schemes of
all procedures involved and can therefore decide to merge MAIN with the cluster
also. The result can be seen in Figure 4. It remains to merge the procedures
CALC3Z, TIME0, and INITAL, which can indeed also be inserted into the cluster
in this program. Overall, the main loop of the PCA is executed 7 times in this
example, although there are 10 edges in the program's call graph. This shows
that in real programs not every edge of the call graph has to be analyzed isolated
which speeds up our algorithm significantly. All the results of our analysis as well
as code excerpts of shallow can be found in [13].

Another example is the Tred2 routine from the Eispack library. It reduces
a symmetric matr ix to a tridiagonal matr ix using and accumulating orthogonal
similarity transformations. In Figure 5 we show the inter-procedural analysis
results of tred2 and performance measurements on the Meiko CS2 with different
alignment and distribution settings. The size of the matr ix was 1602 . It is worth
noting that our proposed alignment performs best in all but one of the test cases.
Moreover, with our alignment and an appropriate data distribution the optimal
performance can be achieved.

755

Set 1
Z1-Perfect Locality
A2-Perfect Locality

Set 2
Z2-Perfect Locality
A2-Perfect Locality
D1-Perfect Locality

El-Constant Locality(i;0,1)

TRED2 .F

s o t

tAUGN~ A(") 4Sb
t

40F

2s~ •

~° I t I S •

, o ~ [. . . . 2
() ~) () <~ () r)

Fig. 5. The Tred2 Example

6 Conclusions
In our previous work, we have focused on advanced models for alignment analysis
which combine inter- and intradimensional alignment preferences. This combina-
tion turned out to have an important impact on the solution's accuracy. However,
the analysis was so far restricted to intraprocedural problems.

In this paper, we have extended our analysis to interprocedural problems. A
strategy for dealing with array alignment across procedure boundaries is natu-
rally a key requirement for any system which is able to handle real applications.

We have shown how to combine the intraprocedural models for the align-
ment problem taking into account both inter- and intradimensional preferences.
A greedy algorithm was proposed to solve the problem of clustering several pro-
cedures, where the alignment scheme within each cluster will remain invariant.
The main step of this Procedure Clustering Algorithm (PCA) was the merging
of the alignment models (CAG) of two procedures. Cost models are introduced
to measure the cost of a candidate alignment scheme as well as realignment cost
at procedure boundaries. In formulating our methods, we considered the needs
of future extensions to perform automatic data distribution. These extensions
will use essentially the same methods, with additional cost models for available
parallelism and array redistribution.

Although we do not handle dynamic intraprocedural analysis at the mo-
ment, our models can be successfully applied for this kind of problem, too. The
main issues within this context include the definition of computational phases,
within which the alignment scheme stays invariant, as well as more advanced
flow analysis for the reaching distribution problem as needed for the estimation
of realignment cost.

In our future work, we plan to extend our models with parallelism constraints
in order to evolve towards automatic data distribution. We will study the pro-
posals of Garcia et al. [6, 7] for including information on parallelism in the
alignment model and will consider replacing the current heuristic algorithm for
solving the intraprocedural alignment problem with integer programming tech-
niques, as proposed by Kremer and Garcia et al. However, we have to carefully
study the time complexity of these techniques within our framework.

7 Acknowledgments
The authors would like to thank Markus Egg from the VCPC for implementing
the GUI within the tool ANALYST.

756

References

1. E. Ayguade, J. Garcia, M. Girones, M. Luz Gra~lde, and J. Labarta. DDT: A Re-
search Tool for Automatic Data Distribution in HPF. Technical Report UPC-
CEPBA-1995-20, Polytechnic University of Catalunya, Barcelona, Spain, 1995.

2. S. Chatterjee, J.R. Gilbert, R. Schreiber, and S. Teng. Automatic Array Align-
ment in Data-Parallel Programs. In Proceedings of the Twentieth Annual
ACM SIGACT/SIGPLAN Symposium on Principles of Programming Languages,
Charleston, January 1993.

3. C. G. Diderich and M. Gengler. Solving the constant-degree parallelism afignment
problem. In Proc. of EuroPar '96, August 1996.

4. M. Dion and Y. Robert. Mapping Affine Loop Nests: New Results. Technical
Report Nr. 94-30, Laboratoire de l'Informatique du Parall~lisme, Ecole Normale
Sup~rieure de Lyon, November 1994.

5. High Performance Fortran Forum. High Performance Fortran Language Specifica-
tion Version 2.0, January 1997.

6. J. Garcia, E. Ayguad~, and J. Labarta. A Novel Approach Towards Automatic
Data Distribution. In Workshop on Automatic Data Layout and Performance
Prediction, Houston, April 1995. CRPC, Rice University.

7. J. Garcia, E.Ayguad~, and J. Labarta. Dynamic Data Distribution with Control
Flow Analysis. In Proceedings Supercomputing 96, Pittsburgh, PA, November 1996.

8. M. Gupta. Automatic Data Partitioning on Distributed Memory Mulitcomputers.
PhD thesis, Coordinated Science Lab, University of Illinois at Urbana-Champaign,
1992.

9. K. Kennedy and U. Kremer. Automatic Data Layout for High Performance For-
tran. In Proceedings of Supercomputing 95, San Diego,CA, December 1995.

10. U. Kremer. NP-completeness of Dynamic Remapping. In Fourth International
Workshop on Compilers [or Parallel Computers. Delft University of Technology,
Dezember 1993.

11. E. Laure and B. Chapman. Alignment Analysis within the VFCS - A pragmatic
Method for Supporting Data Distribution. TR 96-2, Institute for Software Tech-
nology and Parallel Systems, University of Vienna, October 1996.

12. E. Laure and B. Chapman. Combining Inter- and Intradimensional Alignment
Analysis to Support Data Distribution. In Proceedings HPCN Europe 1997, Lec-
ture Notes in Computer Sdence 1225, pages 830-839. Springer, April 1997.

13. E. Laure and B. Chapman. Interprocedural Array Alignment Analysis. TR 97-
7, Institute for Software Technology and Parallel Systems, University of Vienna,
1997.

14. J. Li and M. Chen. Index Domain Alignment,: Minimizing Cost of Cross-
Referencing Between Distributed Arrays. Technical Report YALEU/DCS/TR-72,
Yale University, November 1989.

15. Qi Ning, V. Van Dongen, and G.R. Gao. Automatic Data and Computation De-
composition for Distributed Memory Machines. In 28th Hawaii International Con-
ference on System Science Wailea, Maul, Hawaii, January 1995.

16. H.P. Zima and B.M. Chapman. Supercompilersfor Parallel and Vector Computers.
ACM Press Frontier Series. ACM, Addison-Wesely, 1990.

