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A b s t r a c t .  The specification of efficient data distribution schemes is one 
of the major tasks in programming DMMPs with data parallel languages. 
Although there are no optimal strategies for generating such data distri- 
butions, several heuristics have been developed to provide some support 
to the user. We presented an overview of an automatic alignment anal- 
ysis tool elsewhere, which is able to automatically generate alignment 
proposals for the arrays accessed in a procedure and thus simplifies the 
data distribution problem. In this paper we extend our previous work to 
interprocedural analysis taking into account dynamic realignment. This 
feature is essential for applying alignment analysis to real programs. 

1 I n t r o d u c t i o n  
When migrating applications to distributed memory  architectures, da ta  locality 
is crucial for performance. Under the da ta  parallel programming paradigm, the 
user must  select a distribution of the program's  da ta  to the target  machine which 
ensures good da ta  locality and balances the work load. High level languages such 
as HPF[5] may use this information directly to generate code. But it is hard to 
determine an appropriate  data distribution. One of the major  approaches to this 
task consists of detecting suitable alignments between dimensions of arrays in the 
user code in order to reduce communication cost due to array cross-references. 

The specification of appropriate  alignments also alleviates the task of specify- 
ing da ta  distributions in the sense that  the aligned array inherits its distribution 
from the source array. 

In [12] we presented a tool performing intraprocedural al ignment analysis 
automatical ly  within the framework of the VFCS compiler. This tool is able to 
solve both the inter- and intradimensional problem using a common problem 
model and efficient heuristic algorithms. 

In this paper we extend our previous work in order to handle interprocedural 
problems allowing dynamic solutions. The capabili ty to manage interprocedural 
problems is one of the key requirements to make the tool applicable for real 
programs. Unfortunately, the problem of dynamic alignment was proved to be 
NP-complete  by Kremer [10]. We therefore propose to make use of an heuristic 
algorithm that  works on an internal problem representation (the Alignment Call 
Graph) and uses greedy techniques that  make the algori thm applicable to real 
world programs. Moreover, our algorithm minimizes the costs that  are associated 
with realignment by carefully choosing which arrays have to be realigned. A 
simple example is presented in Section 5 that  illustrates the main benefits of our 
heuristics. 

* The work described in this paper was supported by the Austrian Science Fund FWF 
(SFB F011 "AURORA") and the European Union (ESPRIT project 23502 "FITS"). 
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Rela ted  Work  The pioneering work in the field of automatic alignment and, 
subsequently, automatic data distribution was done by Li and Chen [14] and 
Manish Gupta [8], whose results strongly influenced our analysis. Instead of us- 
ing heuristics to solve the alignment problem Kremer [9] proposed to use 0/1 
integer programming techniques. The approach of Gareia et al. [6, 7] introduces 
a new framework combining both alignment and data distribution analysis. Both 
approaches provide dynamic solutions but are restricted to intraprocedural anal- 
ysis. Other researchers such as [4, 15, 3] deal with the alignment problem by 
solving matrix equations based upon the array access patterns. This approach 
seems to be more restricted than ours and its execution can moreover be very 
time consuming, thus preventing the analysis of larger applications. Chatterjee 
et al. [2] have developed algorithms in the field of dynamic programming. Ning et 
al. proposed an algorithm for dynamic alignment within the context of HPC [15]. 
Although their work is restricted to dynamic intraproeedural solutions, it has 
inspired our Procedure Clustering Algorithm. In some of the research mentioned 
above dynamic solutions are considered, however, they are limited to intrapro- 
cedural analysis. Ayguade et al. presented in [1] a research tool which is able 
to generate interprocedural solutions. However, exhaustive search techniques are 
applied thus preventing the analysis of bigger programs. 

The remainder of this paper is organized as follows: The basic concepts used 
for alignment analysis are introduced in Section 2. Section 3 gives a brief review 
of our previous work on intraprocedural analysis. The problem of interprocedu- 
ral analysis is handled in Section 4. Finally we present an application example 
showing the main features of our interprocedural algorithm and we end with 
some remarks on this work. 

2 B a s i c  C o n c e p t s  

In t r ap rocedura l  Analysis Our approach to intraprocedural alignment analy- 
sis is to analyze array references of statements inside the loops of the examined 
program unit (procedure). 

Let L denote a loop and S an assignment statement within L. Let furthermore 
a and b denote references to arbitrarily dimensioned arrays A and B in S. 

Information useful for the alignment problem can be gathered by analyzing 
each pair of these subscript expressions. 

For modeling the alignment problem we use the Component Alignment Graph 
(CAG) framework first introduced by Li and Chen [14]. The CAG is an undi- 
rected weighted graph. A node represents a dimension of an array which is 
referenced in the examined unit. If the alignment analysis detects a preference 
for aligning two array dimensions, the corresponding pair of nodes in the CAG 
are connected by an undirected weighted edge, called alignment edge (e). An 
alignment edge is attributed with information about both inter- and intradi- 
mensional preferences (cf. Section 3). The solution of the alignment problem is 
represented via the Alignment Sets (S), also introduced by Li and Chen [14]. 
S = 81, ..., $~(d _~ 1), where d is the number of dimensions of an array with the 
highest dimensionality in the analyzed unit. All nodes of the CAG are matched 
to S such that all nodes belonging to 8i E S express a preference for alignment 
(cf. Section 3). 

In the remainder we use the following notation: a node of the CAG is de- 
noted by the capitalized name of the array, subscripted with the dimension, and 
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alignment edges are denoted by e(node,node); e(A1, B2) therefore represents the 
edge between the first dimension of array A and the second one of array B. 

I n t e r p r o c e d u r a l  Ana lys i s  Let P denote a program. P is a set of n _> 1 pro- 
cedures denoted by p corresponding to Fortran program units. The call graph G 
of P is a directed graph G = (N, E), where there is a one-to-one correspondence 
between N and P,  and (p, q) E E iff procedure p contains a call whose execution 
may result in the direct activation of procedure q. Procedure p is called the caller 
and q the callee. The set of all calls occurring in the program text of p resulting 
in a direct activation of q is denoted by ealls(p,q). We assume that G is acyclic. 

Let formal(q) denote the set of formal parameters of q and global(q) the set 
of global variables accessible in q. If during a call an array A is bound to an 
formal array B E formal(q) we denote this binding by b(A, B). 

Let G be the call graph of P.  The A l i g n m e n t  Cal l  G r a p h  ( A C G )  is an 
exact copy of G holding additional information for alignment analysis. 

Each procedure p C ACG is linked to its CAG and Alignment Sets computed 
during the intraprocedural phase. Moreover, each edge of the ACG is weighted 
with the frequency measure of how often the call occurs. Note, that for sake 
of exact analysis we have to distinguish between the absolute call frequency 
(aef), which is the overall frequency measured during the program execution, 
and the relative call frequency (rfc), which is the average call frequency during 
one instance of the caller. 

All further actions during the interprocedural analysis use the ACG only, 
and do not affect the program's call graph G. Thus, when applying procedure 
clustering (cf. Section 4.2) a node in the ACG may refer to a set of nodes in G. 

3 Intraprocedural Analysis 
The Intraprocedural Analysis is the kernel of our tool. For each program unit 
the CAG is constructed and the (intraprocedural) alignment problem is solved 
using a heuristic algorithm. The solution is represented in the form of Alignment 
Sets. In this section we give a brief overview of the problem formulations and 
the solution algorithms. A comprehensive discussion can be found in [12]. 

The Intraprocedural Alignment P r o b l e m  The intraprocedural alignment 
problem is to identify alignment preferences between two array dimensions by 
analyzing their reference patterns. For each pair of array dimensions which have 
an alignment preference an alignment edge is constructed in the CAG (cf. Section 
2). This edge is annotated with both, inter- and intradimensional information: 

The interdimensional information is a weight which reflects the communi- 
cation effort arising when the two array dimensions are not aligned. Since we 
do not know anything about the actual distributions and processor numbers at 
analysis time, we have to apply strong worst case assumptions reflecting the 
compiler's communication optimization and some machine specific properties. 
We use Equation. (1) for computing the weight where the necessary data  is sup- 
plied by a sequential profiler: 

w(e) = (tt * ca + s t ) ,  c f  (1) 

w(e) symbolizes the weight of edge e, tt the transfer time, ca the amount  of 
communication, st the startup time and finally cf  the communication frequency. 
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For modeling intradimensional preferences we defined the concept of locality 
consisting of the locality type and the locality relation. The locality relation con- 
sists of the tuple (multiplicator, constant offset), where the multiplicator denotes 
strides within the access patterns and the constant offset a possible shift. The 
locality type gives concise information about the locality relation and can be 
perfect, constant or invariant. 

The locality can give useful hints for choosing the appropriate alignment 
functions 2 and also helps us handling multiple occurrences of the same align- 
ment preferences (this means that references to the same a.rrays are alignment 
preferring in distinct parts of the code). Furthermore, competing intradimen- 
sional alignment preferences can be detected. 

Solving the Intraprocedural Problem As proposed by Li and Chen, the 
Alignment Problem can be solved by matching each node of the GAG to a num- 
ber of sets (the number being equal to the highest dimensionality of all arrays 
handled), with the restriction that  no two nodes of the same array may belong to 
the same set, while minimizing the weight of all edges between nodes belonging 
to different sets. These sets are called Alignment Sets. The goals of this proce- 
dure are obvious: when matching nodes (via Alignment Sets), they should be 
distributed in the same manner, certainly according to their intradimensional 
preferences, thus avoiding communication effort due to cross references. Only 
those edges between nodes in different sets symbolize unavoidable communica- 
tion. 

Unfortunately the matching problem as stated above has been proved to 
be NP-complete in [14], however Li and Chen presented an heuristic algorithm 
which reduced the problem to a bipartite-graph matching problem. We make 
use of an adapted version of this algorithm that  takes also intradimensional 
preferences into account. A detailed description can be found in [12]. 

The Alignment Sets are arbitrarily numbered in order to distinguish them 
and can be represented as an ordered list. All nodes belonging to the same set 
should be aligned with each other, where the precise alignments will be based 
upon the intradimensional information with which each node is annotated. 

The information contained in an Alignment Set can be directly used to gener- 
ate alignment directives in HPF-like languages. When generating the alignment 
directives, we consider an array with highest dimensionality to be the alignment 
source array and align all other arrays with it. Subsequently, the user only has 
to specify the distributions for this single alignment source array. 

The GAG and Alignment Sets are stored and linked to the respective node 
in the ACG for the interprocedural analysis. 

4 Interprocedural  Analysis  

In this section we extend our model to interprocedural analysis in order to enable 
its application on full programs. Within this context the possibility of changes 
in the alignment schemes via realignment is worth to be considered. 

Interprocedural alignment analysis which considers redistribution between 
procedure boundaries can be seen as one kind of dynamic alignment, where 
realignment is allowed at specific points in the program. In odr approach we 

2 The main alignment functions under consideration are shift, stride and reflection. 
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currently do not handle intraprocedural phases and allow realignment only at  
procedure boundaries. This simplifies the problem and allows us to study the 
effectiveness of our approach. Nevertheless, our model can be expanded to handle 
intraprocedural phases as well and this will be considered in the future. Our 
approach assumes that  the caller's alignment scheme is restored after execution 
of the return of control to it. 

4.1 P r o b l e m  F o r m u l a t i o n  

The intraprocedural analysis phase results in an ACG (cf. Section 2) where each 
unit is a t t r ibuted with the CAG and the Alignment Sets, representing the prob- 
lem model and its static solution, respectively. The goal of the interprocedural 
analysis is to combine as many  units as possible into unit clusters - where within 
such a cluster the alignment scheme stays invariant - so that  the alignment cost 
within a cluster and the realignment cost between clusters are minimized. The 
alignment cost and the realignment cost are defined as follows: 

A l i g n m e n t  C o s t  The cost of an alignment solution can be defined as the accu- 
mulated weight of all alignment edges connecting nodes in different Alignment 
Sets plus the weight of all edges with a locality relation which is not observed. In 
the following we denote the cost of solution 8 by ac(8). The full mathemat ica l  
formulation can be found in [13]. 

R e a l i g n m e n t  C o s t  For a call c E calls(p, q) the realignment cost can be com- 
puted by comparing the alignment solutions of program unit p with those of 
program unit q. If  we find differing solutions for an array, we have to assume 
that  the array must be redistributed. Note that  we only compute  the cost for 
one execution of a call, which means that  the result must be multiplied with the 
call frequencies to get a comparable measure (cf. Section 4.2). We make worst 
case assumptions,  i.e. that  the whole array has to be comnmnicated.  

The major  problem within this context is the specification of the arrays to 
be realigned. Recall that  alignment is a symmetr ic  relation between two arrays, 
thus in the case of differing alignment schemes we could realign either array. 

Let Sp denote the Alignment Sets of p and Sq the Alignment Sets of q, re- 
spectively. We model the realignment problem in a manner  similar to the inter- 
dimensional alignment problem: a biparti te graph is constructed whose columns 
are composed of Sp and Sq, respectively. There is a node for each Alignment Set. 

Let A C Sp and B E 8q be two arrays bound during the call (b(A, B)). Each 
pair of nodes of the biparti te graph whose associated Alignment Sets contain the 
same dimensions of A and B are connected with an undirected, weighted edge. 
The same holds for arrays within the intersection of global(p) and global(q). 

The edge is weighted with the cost of realigning array A (array realignment 
cost arc) which is according to Equation (1): 

arc(A) -- (tt * arraysize(A) + st) * 2 (2) 

Note that  the realignment cost is multiplied by 2, since realignment occurs on 
the call and on the return. 

The solution of the realignment problem can now be formulated as a matching 
problem for this bipart i te graph that  seeks the min imum accumulated arc for 
every call c C calls(p,q). The output  are the total  realignment costs between 
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procedure_clustering_alsorithm(ACG); 
{unmark_edges(ACG); 
.hile (3 unmarked edge) { 
/* take the t.o nodes (p.q) connected by the unmarked edge with the 
* highest absolute call frequency and their CAGs (CAGI, CAG2) as 
* .ell as their solutions (Sets1,Sets2) and merge the CAGs */ 

CAGm = merge_CAG(CAGI.CAG2); 
Setsm = heuristic_algorithm(CAGm); 
/* compute the cost */ 
cost_merged = ac(Setsm); 
cost_unmerged=ac(Setsl)+~cqcalls(p,q)(rcf(c)*(ac(Sets2)+rc(Setsl,Sets2,c))); 
if (!(cost_merged > cost_unmerged)) 

Update_ACG(ACG,nodel,node2,CAGmjSetsm); 
else 

/* both nodes retain their CAGs and Solutions */ 
mark_edge(); }} 

Fig. 1. Procedure Clustenng Algorithm 

$v and Sq for every call c 6 calls(p, q), denoted by rc(Sp, Sq, c), as well as a 
list of all arrays that  have to be realigned. Note, that this list identifies those 
arrays that lead to minimized realignment cost. Again, the full mathematical 
formulation can be found in [13]. 

The cost model is kept quite simple (e.g. network contentions that are likely 
to occur on redistribution are ignored), but it can easily be substituted with a 
more accurate one if required. Moreover, our analysis is intended to become a 
real automatic data distribution tool in future, which combines alignment and 
distribution analysis. An extension of our model towards this analysis can be 
achieved by substituting the cost model with a more appropriate one reflecting 
also the distributions. 

4.2 The Procedure Clustering Algorithm 
Since finding an optimal solution for dynamic alignment schemes was proved to 
be NP-complete by Kremer [10] we use a greedy algorithm to solve the procedure 
clustering problem heuristically. Our algorithm was inspired by the Clustering 
Algorithm developed by Ning et al. [15]. They developed their algorithm for the 
clustering of program phases defined as loop nests and did not handle interpro- 
cedural problems. We found that this algorithm can be successfully extended 
and modified for interprocedural problems. 

An outline of our Procedure Clustering Algorithm (PCA) can be found in 
Figure 1. The algorithm needs one pass over the ACG and tries to combine those 
procedures which are connected by a maximum weighted edge (absolute call 
frequency) first. It is important to analyze those procedures first, since possible 
realignment cost will be incurred at each instance of the call. 

The next step is the merging of two CAGs, which is described below. The 
heuristic algorithm (cL Section 3) is used to compute the solution of the merged 
CAG, and the cost of this solution is compared with the cost of the original 
solutions plus the realignment cost. Note that  the alignment cost of the callee 
and the realignment cost are multiplied by the relative call frequency. 

Depending on which result is better, the two nodes for the procedures either 
remain separate and retain their original CAGs and solutions or they are merged 
and the ACG is updated accordingly. 
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M e r g i n g  two  C A G s  The central task of the PCA is the merging of two CAGs 
along a procedure cM1. This merging can be seen as a kind ofinline expansion [16] 
on the level of the GAG. Due to Fortran memory management, several problems 
arise. While we can handle common blocks and parameter passing, some specific 
Fortran features such as equivalence and reshaping are not considered. Note 
that the locality relation plays an important  role in this phase, since it is used to 
model changes in the intradimensional alignment during a procedure call. The 
locality of the callee nodes is updated with the locality of the equivalent caller 
nodes using an adapted locality propagation algorithm (the algorithm can be 
found in [11]). 

Another important  issue is the weight with which the edges of both the orig- 
inal CAGs and the merged CAG are annotated. Remember that  the intrapro- 
cedural step uses absolute frequencies for the weight calculation. However, if we 
are looking at two procedures isolated from the program, we should not take 
into account calls from other procedures. Thus, we use relative weights (rw) for 
all CAG edges which indicate the weight for one instance of the procedure. 

The merging algorithm first generates a copy of the caller's CAG, in which 
the callee~s CAG is inserted. For each call the dummy arguments are substituted 
with the actual ones according to their bindings and their locality relations are 
propagated. The weights of the callee's edges are multiplied with the relative 
frequency of the call and all nodes and edges are inserted into the merged CAG 
using the concepts of our intraprocedural analysis, especially where multiple 
aligmnent occurrences and intradimensionat conflicts are concerned. The formu- 
lation of the algorithm can be found in [13]. 

Note that both the caller and the callee in this context refer to a node in the 
ACG, hence they may represent more than one procedure. 

U p d a t i n g  t h e  A C G  If the PCA decides to merge the alignment schemes of 
two procedures we have to update the ACG. The ACG node of the callee is 
merged into the node of the caller which now represents a cluster of procedures. 
All incoming ACG edges of the callee node are redirected to its new node as well 
as all the leaving ones; edges that  are now within a node can be deleted. The 
relative frequencies of all the leaving edges have to be updated (multiplied) with 
the frequency of how often the callee is called directly by the caller. Finally, the 
original node of the callee is deleted from the ACG. 

After the execution of the PCA the ACG holds one node for each cluster 
annotated with tile CAG and the Alignment Sets, and a pointer to G for each 
procedure which is a member of the cluster. The alignment schemes stored in 
the ACG node can easily be propagated to the procedure's source code and re- 
alignment is only necessary along calls between procedures belonging to different 
clusters, where the optimal choice of the arrays to be realigned is specified. 

Note that  all merging actions only affect the ACG, not G. Furthermore our 
algorithm requires a procedure to have only one alignment scheme. Hence pro- 
cedure cloning is not allowed. 

In the worst case our algorithm needs to merge and analyze the CAGs and 
solutions of every pair of procedures connected by an edge in ACG. Thus, the 
complexity is directly proportional with the number of edges in the ACG. For- 
tunately, in the typical case it will not be necessary to analyze each edge on 
its own since we combine nodes in the ACG if we decide to cluster them. In 
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4 

Fig.  2. ACG for shallow Fig.  3. Partially merged (1) Fig.  4. Partially merged (2) 

the following section this is motivated by an application example. Although it 
is simple we believe that this is typical over a large fraction of applications. 

5 A p p l i c a t i o n  E x a m p l e s  

In this section we illustrate our interprocedural algorithm by considering the 
shallow benchmark from the xHPF benchmark set. This code is a straightforward 
weather prediction benchmark program that uses finite differencing. 

The ACG of shallow can be seen in Figure 2. In this diagram, the boxes 
representing those subroutines in which alignment preferences can be found have 
been emboldened. Note that  the time measurement, procedures do not provide 
any information about  alignment, as can be expected. The edges of the call graph 
are annotated with the absolute call frequency (acf). 

First, the PCA tries to merge procedure CPUTIM with CALCl, CALC2, and 
CALC3. This merging is trivial, since CPUTIM has no CAG at all and the other 
procedures are not mutually connected. We can therefore combine these four 
procedures into one cluster (cf. Figure 3). Note that the sinks of some edges 
from procedure MAIN are now within the cluster. Thus, in the next step, which is 
the merging of MAIN and CALCI, all the other calls from MAIN to any procedure 
belonging to the same cluster as CALC t are considered simultaneously. 

At this step, we find that there are no conflicts in the alignment schemes of 
all procedures involved and can therefore decide to merge MAIN with the cluster 
also. The result can be seen in Figure 4. It remains to merge the procedures 
CALC3Z, TIME0, and INITAL, which can indeed also be inserted into the cluster 
in this program. Overall, the main loop of the PCA is executed 7 times in this 
example, although there are 10 edges in the program's call graph. This shows 
that  in real programs not every edge of the call graph has to be analyzed isolated 
which speeds up our algorithm significantly. All the results of our analysis as well 
as code excerpts of shallow can be found in [13]. 

Another example is the Tred2 routine from the Eispack library. It reduces 
a symmetric matr ix to a tridiagonal matr ix using and accumulating orthogonal 
similarity transformations. In Figure 5 we show the inter-procedural analysis 
results of tred2 and performance measurements on the Meiko CS2 with different 
alignment and distribution settings. The size of the matr ix  was 1602 . It is worth 
noting that  our proposed alignment performs best in all but  one of the test cases. 
Moreover, with our alignment and an appropriate data  distribution the optimal 
performance can be achieved. 
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Fig.  5. The Tred2 Example 

6 Conclusions 
In our previous work, we have focused on advanced models for alignment analysis 
which combine inter- and intradimensional alignment preferences. This combina- 
tion turned out to have an important  impact on the solution's accuracy. However, 
the analysis was so far restricted to intraprocedural problems. 

In this paper, we have extended our analysis to interprocedural problems. A 
strategy for dealing with array alignment across procedure boundaries is natu- 
rally a key requirement for any system which is able to handle real applications. 

We have shown how to combine the intraprocedural models for the align- 
ment problem taking into account both inter- and intradimensional preferences. 
A greedy algorithm was proposed to solve the problem of clustering several pro- 
cedures, where the alignment scheme within each cluster will remain invariant. 
The main step of this Procedure Clustering Algorithm (PCA) was the merging 
of the alignment models (CAG) of two procedures. Cost models are introduced 
to measure the cost of a candidate alignment scheme as well as realignment cost 
at procedure boundaries. In formulating our methods, we considered the needs 
of future extensions to perform automatic data  distribution. These extensions 
will use essentially the same methods, with additional cost models for available 
parallelism and array redistribution. 

Although we do not handle dynamic intraprocedural analysis at the mo- 
ment, our models can be successfully applied for this kind of problem, too. The 
main issues within this context include the definition of computational phases, 
within which the alignment scheme stays invariant, as well as more advanced 
flow analysis for the reaching distribution problem as needed for the estimation 
of realignment cost. 

In our future work, we plan to extend our models with parallelism constraints 
in order to evolve towards automatic data  distribution. We will study the pro- 
posals of Garcia et al. [6, 7] for including information on parallelism in the 
alignment model and will consider replacing the current heuristic algorithm for 
solving the intraprocedural alignment problem with integer programming tech- 
niques, as proposed by Kremer and Garcia et al. However, we have to carefully 
study the time complexity of these techniques within our framework. 
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