High Performance Fortran: Current Status and Future
Directions *

Barbara Chapman® Piyush Mehrotra Hans Zima®

“Institute for Software Technology and Parallel Systems,
University of Vienna, Briinner Strasse 72, A-1210 Vienna, Austria
E-Mail: {barbara, zima}@par.univie.ac.at

’ICASE, MS 132C, NASA Langley Research Center
Hampton VA. 23681 USA
E-Mail: pm@icase.edu

Abstract

High Performance Fortran (HPF) was defined with the ob jective of providing sup-
port for the development of efficient data parallel programs for distributed-memory
architectures. We believe that the current version of the language has failed to reach
this goal to a sufficient degree. While the basic distribution functions offered by the lan-
guage can support regular numerical algorithms, advanced algorithms such as particle-
in-cell codes or unstructured mesh solvers cannot be expressed adequately. This paper
discusses some of the data distribution and alignment issues, and outlines possible fu-
ture paths of development. Emphasis will be placed on language features that support
dynamic and irregular distributions. and related implementation strategies developed
in cooperation between Joel Saltz’s group at the University of Maryland and the Vienna
Fortran group.

1 Introduction

High Performance Fortran (HPF ) [5] provides language extensions for Fortran 90 to sup-
port data parallel programming on a range of parallel architectures. The language contains
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directives for specifying alignment and distribution of a program’s data. These enable the
programmer to influence the locality of computation by controlling the manner in which
the data is mapped to processors. Other major extensions include data parallel constructs,
such as the FORALL statement and construct and the INDEPENDENT directive, and
a number of library routines. Even though the defined extensions provide the first steps
towards a portable programming interface, it is our contention that they fall short of the
overall goal.

In this paper we show that there is some important functionality which is missing from
the current HPF language definition. We will focus on features for data distribution and
alignment.

Much of HPF consists of constructs which may be used to specify the mapping of data in
the program to an abstract set of processors. This is achieved via a two-level mapping: first,
data arrays are aligned with other objects, and then groups of objects are distributed onto
an array of abstract processors. These processors are then mapped to the physical processors
of the target machine in an implementation-dependent manner.

The ALIGN directive is used to align elements of data arrays to other data arrays or
templates. Templates are abstract index spaces which can be used as a target for alignment
and may then be distributed in the same way as arrays. The DISTRIBUTE directive is
provided to control distribution of the dimensions of arrays or templates onto an abstract
set of processors. The distribution of a dimension may be described by selecting one of a
set of predefined primitives which permit block, cyclic or block-cyclic mapping of the ele-
ments. The rules for alignment are more flexible: a linear function may be used to specify
the relationship between the mappings of two different data arrays. Mechanisms are also
provided to enable dynamic modification of both alignment and distribution; these are the
REALIGN and REDISTRIBUTE directives, respectively.

These language constructs suffice for the expression of a range of numerical applications
operating on regular data structures. However, more complex applications pose serious
difficulties. For example, modern codes in such important application areas as aircraft
modeling and combustion engine simulation often employ multiblock grids. Even if these
grids are to be distributed by block to processors, the constructs of the current HPF language
specification do not permit an efficient data mapping for these programs: this requires
distributions to sections of the processor array in general [3]. HPF is even less equipped
to handle advanced algorithms such as particle-in-cell codes, adaptive multigrid solvers,
or sweeps over unstructured meshes. Many of these problems need more complex data
distributions if they are to be executed efficiently on a parallel machine. Some of them may
require the user to control the execution of major do loops by specifying which processor
should perform a specific iteration. These are not provided by HPF.

Some programs will require that data be distributed onto processor arrays of different
dimensions: the current language definition does not permit the user to prescribe or assume
any relationship between such processor arrays.

Language extensions which provide the required functionality include

e distribution to processor subsets



® Drocessor views

general block distributions

indirect distributions

user-defined distribution functions, and
e on-clauses for the control of the work distribution in an INDEPENDENT loop.

In this paper, we indicate how such features might be added to the language and give a
number of examples to illustrate their use. The set of all features that we propose for inclusion
into the current version of HPF will be informally subsumed under the name HPF*. Our
prime consideration is functionality and semantics; we do not attempt to provide a full
definition of the proposed features, and sometimes use an ad-hoc syntax. In a few places,
we use syntax from Vienna Fortran [2, 11], which already provides solutions for some of the
problems discussed in this paper.

We assume throughout that the reader is familiar with the basic mechanisms of HPF for
mapping data. The full details are to be found in the HPF Language Specification [5].

The next section deals with irregular data distributions, introducing indirect distributions
(Section 2.1) and user-defined distribution functions (Section 2.2) as two different approaches.
In Section 3, we discuss on-clauses in relationship with INDEPENDENT loops. The two
subsequent sections illustrate two approaches — on different levels of abstraction — to the
problem of formulating sweeps over unstructured meshes. Concluding remarks are to be
found in Section 6.

2 Irregular Distributions

Dimensions of data arrays or templates are mapped in HPF by specifying one of a small
number of predefined distributions, possibly with an argument. There are a number of
applications, for example particle-in-cell codes, for which these mappings are inadequate
since they do not provide adequate balancing of the work load. One possible solution for
this problem is a generalization of the block distribution.

General block distributions, as initially implemented in SUPERB [10] and Vienna
Fortran [2, 11|, are similar to the regular block distributions of HPF in that the index
domain of an array dimension is partitioned into contiguous blocks which are mapped to
the processors; however, the blocks are not required to be of the same size. Thus, general
block distributions provide more generality than regular blocks while retaining the contigu-
ity property, which plays an important role in achieving target code efficiency. An example
illustrating their use for the solution of a particle-in-cell code is given in [3].

General block distributions provide enough flexibility to meet the demands of some ir-
regular computations: if, for instance, the nodes of an unstructured mesh are partitioned
prior to execution and then appropriately renumbered, then the resulting distribution can
be described in this manner. However, this approach is not appropriate for each irregular
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problem. For example, a data distribution as shown in F igure 1 — which may be the outcome
of a dynamic partitioner — cannot be represented in this way. A system based on this kind
of distribution was developed by Baden [1].

Figure 1: An example for an Irregular Block Distribution

Rather than proposing a special syntax for this kind of distribution, we will in the follow-
ing subsections deal with a range of mechanisms, at different levels of abstraction, to handle
arbitrarily complex data distributions.

We begin with indirect distribution functions, which allow the specification of a distribu-
tion via a mapping array (Section 2.1), and continue with user-defined distribution functions
(Section 2.2). After discussing an extension of HPF’s INDEPENDENT loop concept (Sec-
tion 3), we give an example of a sweep over an unstructured mesh, based on all three
extensions (Section 4). We conclude with the discussion of language features that directly
support the binding of partitioners to INDEPENDENT loops (Section 5).

2.1 Indirect Distributions

Indirect distribution functions can express any distribution of an array dimension that
does not involve replication. Consider the following program fragment in HPF*:

IHPF$ PROCESSORS R(M)
REAL A(N)
INTEGER MAP(N)

'HPF$ DYNAMIC , DISTRIBUTE (BLOCK) :: A
'HPF$ DISTRIBUTE (BLOCK) :: MAP

I Compute a new distribution for A and save it in the mapping array MAP:
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| The j-th element of A is mapped to the processor whose number is stored in MAP(j)
CALL PARTITIONER(MAP, A,...)

! Redistribute A as specified by MAP:
'HPF$ REDISTRIBUTE A(INDIRECT(MAP))

Array A is dynamic and initially distributed by block. M AP is a statically distributed
integer array that is of the same size as A and used as a mapping array for A; we specify a
reference to an indirect distribution function in the form INDIRECT(MAP). When the ref-
erence is evaluated, all elements of M AP must be defined and represent valid indices for the
one-dimensional processor array R, i.e., they must be numbers in the range between 1 and
M. A is then distributed such that for each 7,1 < j < N, A(j) is mapped to R(MAP(j)).
In this example, MAP is defined by a partitioner, which will compute a new distribution
for A and assign values to the elements of MAP accordingly. (This distribution will often be
used for a number of arrays in the program).

Indirect arrays were introduced in [7, 9]. They must be supported by a runtime system,
which manages the internal representation of the mapping array and handles accesses to
the indirectly distributed array. The mapping array is used to construct a translation table,
recording the owner of each datum and its local index. Note that this representation has
O(N) elements, on the same order as the size of the array. Most codes require only a very
small number of indirect mappings (this is usually between 1 and 3 distinct mappings). The
PARTI routines [9] represent a runtime library which directly supports indirect distribution
functions, and has been integrated into a number of compilers.

2.2 User-Defined Distribution Functions

Indirect distribution functions incur a considerable overhead both at compile time and at
runtime. A difficulty with this approach is that when a distribution is described by means
of a mapping array, any regularity or structure that may have existed in the distribution is
lost. Thus the compiler cannot optimize the code based on this complex but possibly regular
distribution.

User-defined distribution functions (UDDFs) provide a facility for extending the
set of intrinsic mappings defined in the language in a structured way. The specification of a
distribution function introduces a class of distribution types by establishing mappings from
(data) arrays to processor arrays.

UDDFs were first defined in Kali [7] and Vienna Fortran [11].

Syntactically, UDDFs are similar to Fortran functions; however, their activation results in
the computation of a distribution rather than in the computation of a value. Apart from this,
no side effects may occur as a result of executing these functions. UDDF's have two implicit
formal arguments, representing the data array to be distributed and the processor array




to which the distribution is targeted. Specification statements for these arguments can be
given using the keywords TARGET_ARRAY and PROCESSOR_ARRAY , respectively.
Other local data structures may be declared as well. UDDF's may contain Fortran executable
statements along with at least one distribution mapping statement which maps the elements
of the target array to the processors.

UDDFs constitute the most general mechanism for specifying distributions: any arbitrary
mapping between array indices and processors can be expressed, including partial or total
replication. We illustrate their use by an example, representing indirect distributions. A
more elaborate application, describing a skewed distribution, can be found in [3].

Example: A UDDF Specifying an Indirect Distributions

The distribution function INDIRECT, as introduced in the previous section, can be easily
expressed by a UDDF as shown below. For simplicity we assume that A and MAP have the
same shape.

'HPF$ DFUNCTION INDIRECT(MAP)
'HPF$ TARGET_ARRAY A(%)

IHPF$ PROCESSOR_ARRAY R(:)
'HPF$ INTEGER MAP(¥)

'HPF$ DO I1=1,SIZE(A)

'HPF$ A(I) DISTRIBUTE TO R(MAP(I))
'HPF$ ENDDO

'HPF$ END DFUNCTION INDIRECT

A facility similar to UDDF's can be provided for user-defined alignment; the (implicitly
transferred) processor array of the UDDF must be replaced in this case by the source array
to which the target array is to be aligned [11].

3 Extensions of the INDEPENDENT Loop Concept

Whenever a do loop contains an assignment to an array for which there is at least one indirect
access within the loop, then the compiler will not be able to determine whether the iterations
of the loop may be executed in parallel. Since such loops are common in irregular problems,
and may contain the bulk of the computation, the user must assert the independence of the
do loop’s iterations.

For this, HPF provides the INDEPENDENT directive, which asserts that a subsequent
do loop does not contain any loop-carried dependences [12], allowing the loop iterations to
be executed in parallel. The INDEPENDENT directive may optionally contain a NEW
clause which introduces private variables that are conceptually local in each iteration, and
therefore cannot cause loop-carried dependences.



There are two problems with this feature:

e There is no language support to specify the work distribution for the loop, i.e.,
the mapping of iterations to processors. This decision is left to the compiler/runtime
system.

e Reductions, which perform global operations across a set of iterations, and assign
the result to a scalar variable, violate the restriction on dependences and cannot be
used in the loop (note that HPF and Fortran 90 provide intrinsics for some important
reductions).

The first problem can be solved by extending the INDEPENDENT directive with an
ON clause that specifies the mapping, either by naming a processor explicitly or referring
to the owner of an element. The concept of on clause was first introduced in Kali [7] and
later adopted in Fortran D [4] and Vienna Fortran [2]; a similar proposal was discussed in
the HPF Forum but not included in the language (see [5], Journal of Development, Section
11). For example, in

'HPF$ PROCESSORS R(M)

'HPF$ INDEPENDENT, ON OWNER (EDGE(L1)), ...
DO I = 1, NEDGE

iteration I of the loop is executed on the processor that owns the array element EDGE(I, 1).
If we assume that R(F(I))is this processor, the above example could also be written in the
form

'HPF$ PROCESSORS R(M)

'HPF$ INDEPENDENT, ON R(F(I)), ...
DO I = 1, NEDGE

The second problem can be solved by extending the language with a reduction directive
— which is permitted within such loops — and imposing suitable constraints on the statement
which immediately follows it. It could be augmented by a directive specifying the order in
which values are to be accumulated. Note that simple reductions could be detected by most
compilers.

For example, in the code fragment below, the contributions INCR(I) of different iterations
are accumulated in the variables Y(EDGE(I,1)) (where EDGE(I,1) may yield the same value
for different values of I — see Section 4 for an example with a geometric interpretation):

'HPF$ PROCESSORS R(M)
'HPF$ INDEPENDENT, ON OWNER (EDGE(I,1)), ...
DO I = 1, NEDGE




'HPF$ RE;DUCTION
Y(EDGE(L1)) = Y(EDGE(L1)) + INCR(I)

Vienna Fortran provides a language extension for reduction operations which is more
general, but which is not a directive.

4 Sweep Over An Unstructured Mesh

We now illustrate some of the language features introduced above by reproducing a section
of code from a two-dimensional unstructured mesh Euler solver.

The mesh for this code consists of triangles; values for the flow variables are stored at
their vertices. The computation is implemented as a loop over the edges: the contribution
of each edge is subtracted from the valye at one node and added to the value at the other
node.

Figure 2 illustrates one solution to this problem. The mesh is represented by the array
EDGE, where EDGE(I, 1) and EDGE(I,2) are the node numbers at the two ends of the
Ith edge. The arrays X and YV represent the flow variables, which associate a value with
each of the NNODE nodes,

Consider the distribution of the data across the one-dimensional array of processors,
R(M). Each of the arrays has to be dynamically distributed, since the mesh is to be dis-
tributed at runtime, in order to balance the computational load across the processors.

The array X is declared to be dynamically distributed with an initial block distribution.
Further below, this array is distributed indirectly, using the mapping array MAP. The user-
specified routine PARTI TIONER, whose code has been omitted from the example, will
generate a mesh partition and store it in MAP.

Y is also declared with the keyword DYNAMIC and is aligned to X. Whenever X is
redistributed, Y is automatically redistributed with exactly the same distribution function.

Consider now how the array EDGE is used in the algorithm. Since the elements of
EDGE are pointers to flow variables — in iteration I, X(EDGE(I, 1)), X(EDGE(I,2))
and the corresponding components of X and Y are accessed — we relate the distribution of
EDGE to the distribution of X and Y in such a way that EDGE(I,:) is mapped to the same
processor as X(EDGE(I,1)).

This kind of relationship between data structures occurs in many codes, since a mesh is
frequently described in terms of elements, whereas values are likely to be accumulated at the
vertices. It can be simply expressed if we extend the REDISTRIBUTE directive as shown
in the example.

The computation is specified using an extended INDEPENDENT loop. The work
distribution is specified by the ON clause: the Ith iteration is to he performed on the
processor that owns EDGE(I,1).




PARAMETER (NNODE = ...)
PARAMETER (NEDGE = ...)
'HPF$ PROCESSORS R(M)

REAL X(NNODE), Y(NNODE)
INTEGER MAP(NNODE)

REAL EDGE(NEDGE,2)
INTEGER NI, N2

REAL DELTAX

'HPF$ DYNAMIC :: X,Y,EDGE

'HPF$ DISTRIBUTE (BLOCK) :: X, MAP
'HPF$ ALIGN WITH X = Y

'HPF$ DISTRIBUTE (BLOCK,*) :: EDGE

CALL PARTITIONER(MAP,EDGE)

'HPF$ REDISTRIBUTE X(INDIRECT(MAP))
'HPF$ REDISTRIBUTE EDGE(I,:) ONTO R(MAP(EDGE(L,1)))

'HPF$ INDEPENDENT, ON OWNER (EDGE(],1)), NEW (N1, N2, DELTAX)
DO I = 1, NEDGE

N1 = EDGE(L,1)

N2 = EDGE(L,2)

DELTAX = F(X(N1), X(N2))
'HPF$ REDUCTION

Y(N1) = Y(N1) - DELTAX
IHPF$ REDUCTION

Y(N2) = Y(N2) + DELTAX

END DO

END

Figure 2: Code for Unstructured Mesh in HPF*



The variables N1, N2 and DELTAX are private, so conceptually each iteration is al-
located a private copy of each of them. Hence assignments to these variables do not cause
flow dependencies between iterations of the loop.

For each edge, the X values at the two incident nodes are read and used to compute
the contribution DELTAX for the edge. This contribution is then accumulated into the
values of Y for the two nodes. But since multiple iterations will accumulate Y values at each
node, different iterations may write to the same array elements. As a consequence, we have
indicated that these are reductions.

The dominating characteristic of this code, as far as its compilation is concerned, is that
the values of X and Y are accessed via the edges, hence a level of indirection is involved.
In such situations, either the mesh partition must be available to and exploitable by the
compiler, or runtime techniques such as those developed in the framework of the inspector-
executor paradigm [6, 9] are needed to generate and exploit the communication pattern.

5 Sweep Over Unstructured Mesh: Revisited

The code for the unstructured Euler solver discussed in the previous section represents a low-
level approach to parallelization, in which the programmer assumes full control of data and
work distributions, using the ON clause, and indirect distribution functions; a user-defined
partitioning routine explicitly constructs a mapping array which can then be referred to.

This process may be further automated. Recent developments in runtime support tools
and compiler technology, such as the CHAOS system developed at the University of Mary-
land [8] and integrated in the Vienna Fortran Compilation System, show how a higher level
language interface may be provided in which control over the data and work distributions in
an INDEPENDENT loop can be delegated to a combination of compiler and runtime sys-
tem. We illustrate this approach by the example in Figure 3 which uses an ad hoc notation
as follows.

The use-clause of the INDEPENDENT loop enables the programmer to select a parti-
tioner from those provided in the environment (in the example, this is SPECTRAL_PART)
and the arrays (in the example, X) to which it is to be applied. SPECTRAL_PART is called
with implicit arguments specifying the iteration space of the INDEPENDENT loop and
the data flow pattern associated with the use of X in the loop. The call has two effects:
First, a new distribution is computed for X, and X along with its associated secondary ar-
ray, Y, is redistributed accordingly. Secondly, a new work distribution is determined for the
INDEPENDENT loop, based on the combined objectives of minimizing load imbalances
and maximizing locality.

The actions described above represent an extension of the inspector in the inspector-
executor paradigm [6, 9] and are performed before the actual execution of the loop. Note that

X and Y have been implicitly redistributed as a result of the execution of the INDEPENDENT

loop, and will retain that distribution after the loop has completed execution.
Other constructs may be useful in conjunction with the specification of a partitioner:
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PARAMETER (NNODE = ...)
PARAMETER (NEDGE = ...)
'HPF$ PROCESSORS R(M)

REAL  X(NNODE), Y(NNODE)
REAL  EDGE(NEDGE,?)
INTEGER N1, N2

REAL DELTAX

'HPF$ DYNAMIC : X,Y,EDGE

'HPF$ DISTRIBUTE (BLOCK) :: X
'HPF$ ALIGN WITH X = Y

'HPF$ DISTRIBUTE (BLOCK,*) :: EDGE

'HPF$ INDEPENDENT, NEW (N1, N2, DELTAX), USE (SPECTRAL_PART(X))
IHPF$ DO I= 1, NEDGE

N1 = EDGE(L,1)
N2 = EDGE(I,2)

DELTAX = F(X(N1), X(N2))
'HPF$ REDUCTION
Y(N1) = Y(N1) - DELTAX
'HPF$ REDUCTION
Y(N2) = Y(N2) + DELTAX
END DO
END

Figure 3: Code for Unstructured Mesh: Version 2
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for example, the user may wish to specify the array whose usage within the loop should
form the basis of the loop’s work distribution. It may sometimes be desirable to restore the
distribution of one or more of the newly partitioned arrays after the loop has executed. If
the partitioner is to be invoked at intervals throughout the program’s execution, a condition
for its invocation may be needed; this may depend on the value of the loop variable or some
other program variable. Finally, it may be be necessary to combine this approach with low-
level control, in which case some means of accessing the map array implicitly constructed
for irregularly partitioned arrays such as X should be provided.

Note that rather than attaching such attributes to a number of INDEPENDENT loops
individually, language features can be defined that associate a partitioner with the whole
program or a set of loops. We do not discuss their syntax here.

6 Conclusion

In this paper, we have discussed the capabilities of High Performance Fortran for expressing
data parallel programs in an efficient manner. We claimed that current HPF does not
provide sufficient functionality to implement these problems in an efficient manner. The
paper proposes a range of language features, with a particular emphasis on the problem of
distributing data and work to the processors of a machine.
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