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Abstract

High Performance Fortran (HPF) is an informal standard for extensions to Fortran
to assist its implementation on parallel architectures, particularly for data-parallel com-
putation. Among other things, it includes directives for expressing data distribution
across multiple memories, extra facilities for expressing data parallel and concurrent
execution, and a mechanism for interfacing HPF to other languages and programming
models.

This paper provides a comprehensive tutorial introduction to HPF 2.0, the latest
version of the HPF standard which was published in early 1997. It also outlines the
history of the HPF language development and lists some World Wide Web sites where
information about HPF compilers and tools, tutorials, codes and projects can be found.

1 Introduction

High Performance Fortran (HPF) is an informal language standard which aims to simplify
the task of programming data parallel applications for distributed memory MIMD machines.

It is generally accepted that the largest obstacle to the widespread use of distributed
memory message-passing systems is the difficulty encountered in programming them. The
need to explicitly partition data, insert message passing, handle boundary cases, etc, is a
very complicated, time-consuming and error-prone task, and it also impairs the adaptability
and portability of the resulting program.

HPF removes this burden from the programmer. It comprises a set of extensions to
standard Fortran. The central idea of HPF is to augment a standard Fortran program with
directives that specify the distribution of data across disjoint memories. The HPF compiler
then handles the messy business of partitioning the data according to the data distribution
directives, allocating computation to processors according to the locality of the data ref-
erences involved, and inserting any necessary data communications in an implementation
dependent way, for example by message-passing or by a (possibly virtual) shared memory

mechanism.




HPF is also designed to be largely architecture independent. It can be implemented
across the whole spectrum of multi-processor architectures: distributed and shared memory
MIMD, SIMD, vector, workstation networks, etc, and can even be implemented on single-
processor systems, because data distribution is specified by means of directives, i.e. struc-
tured comments which do not affect the program semantics and are significant only to an
HPF compiler. Thus HPF aims to solve the dual problems of the difficulty of programming
distributed memory systems and the lack of portability of the resulting programs.

This paper provides a comprehensive introduction to HPF 2.0, the latest version of the
HPF standard which was published in early 1997. Section 2 outlines the history of the HPF
language development. Sections 3-6 explain HPF’s data distribution extensions, namely
the DISTRIBUTE and ALIGN directives, the distribution of procedure arguments, and the
TEMPLATE directive. Section 7 describes the restrictions imposed by HPF on the use of
sequence and storage association for distributed variables. Section 8 presents HPF’s exten-
sions for expressing data parallel and concurrent execution. Section 9 describes the extrinsic
mechanism, whereby HPF can call non-HPF procedures. Sections 10 and 11 summarise
the HPF intrinsic functions and standard library, and the HPF 2.0 ‘Approved Extensions’.
Finally Section 12 provides a survey of some World Wide Web sites where information can
be found about HPF compilers and tools, tutorials, example codes and projects.

2 History of HPF

The HPF extensions were developed by the ‘High Performance Fortran Forum’, a working
group comprising representatives of most parallel computer manufacturers, several compiler
vendors, and a number of government and academic research groups in the field of parallel
computation. There have been three rounds of HPFF meetings so far.

2.1 75 HP 120

The first version of the language, HPF 1.0, was developed between March 1992 and May
1993, following an initial kick-off meeting convened in January 1992 by Ken Kennedy of Rice
University and Geoffrey Fox of Syracuse University. The design of HPF’s data distribution
features was strongly influenced by Fortran D and Fortran 90D (1, 2] and Vienna Fortran
[3]. Significant inputs to the language development were also provided by a number of other
research prototype parallelisation systems based on language extensions for specifying data
distribution, such as Distributed Fortran 90 [4, 5] and Pandore C [6], as well as by Fortran
dialects and proposals from vendors such as Digital [7], Convex, Cray 8], IBM [9], Maspar
[10] and Thinking Machines [11], together with inputs from a variety of other sources; see
(12] for further references.

The HPF 1.0 language definition was published in (12]. This document also defined an
official subset of the language, ‘Subset HPF’, to facilitate early implementation. In practice,
all early HPF implementations, which started to appear in about 1994, concentrated on the
Subset HPF features rather than attempting to support all of HPF.

A number of features that were considered but not accepted into HPF 1.0 were presented
in a separate document, the ‘HPF Journal of Development’ [13]. These features were rejected
for lack of time or consensus, or in order to minimise direct extensions to Fortran 90, rather
than because of technical flaws, and so were documented so that they could provide input
to future language design activities.
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A textbook about HPF-1 has been published [14], as have a number of HPF-1 language
tutorials, e.g. [15].

2.2 HPF1:1

A second set of meetings from April 1994 to October 1994 concentrated on corrections,
clarifications and interpretations of HPF 1.0, resulting in the production of a revised and
corrected version of the language specification, HPF 1.1 [16]. Some requirements for HPF
2.0 were also identified at that time [17].

2.3 HPF 2.0

A third set of meetings was held from January 1995 to December 1996 to develop further
extensions to HPF. Their aim was to broaden HPF’s applicability by providing features such
as enhanced data distributions, task parallelism and computation control, parallel I/O, and
directives to assist communication optimisation [17].

However, it became clear that vendors were reluctant to greatly extend the basic HPF
language for fear of delaying commercial implementations and/or encouraging partial im-
plementations, thus undermining HPF’s credibility and use. The outcome was to define a
new HPF base standard, HPF 2.0, which in terms of its extensions is quite similar to Subset
HPF-1. In fact the main difference between Subset HPF-1 and HPF 2.0 is that the former
was based on Fortran 77 plus a subset of Fortran 90 features that were considered important
for parallelism, for example array syntax, while HPF 2.0 is based on full Fortran 95! [18].

All other HPF extensions, both new and old, are designated ‘HPF 2.0 Approved Exten-
sions’. The idea is that a standard-conforming HPF'-2 compiler must provide full support
for the HPF 2.0 features, but is not required to support any of the Approved Extensions.
Presumably the Approved Extensions will tend to provided only if there is sufficient demand
from users. Also the ‘Approved Extension’ status should allow more flexibility to deviate
from the detailed specification, possibly allowing improvements in the light of implemen-
tation and user experience. Those features that turn out to be widely used can then be
incorporated in the next revision of the HPF base standard. The specification of the HPF
2.0 language and Approved Extensions can be found in [19].

This paper provides an informal introduction to HPF 2.0, assuming familiarity with
Fortran 90. We shall concentrate on the HPF 2.0 base language, except for section 11
which summarises the Approved Extensions. We start with HPF’s most fundamental and
important extensions, namely its extensions for specifying data distribution, which are the
subject of the next few sections.

3 Data distribution

‘Data mapping’ is the HPF term for the allocation of data to multiple memories. HPF's
data mapping extensions are its most fundamental features.

Data mapping is specified in HPF by ‘directives’. These are structured Fortran comments
that are distinguished by starting with the characters ‘HPF$’ immediately after the comment

LFortran 95 is the latest revision of Fortran, which is expected to be published in late 1997 or early
1998. Its main enhancements compared with Fortran 90 are features from HPF-1, namely FORALL, PURE
procedures, and the ability to elementally reference PURE procedures (the latter of which was proposed in
the HPF Journal of Development although not actually a part of HPF-1). Thus one could say that HPF-2
is based on Fortran 95, and Fortran 95 is based on HPF-1!




character, that is, immediately after ‘!’ in free source form, or ‘C’, ‘*’ or ‘! in column 1
in fixed source form. Being structured comments they are ignored by a standard Fortran
compiler and only recognised by an HPF compiler, so an HPF program can even be compiled
by a normal Fortran compiler for a single processor machine. This is acceptable as they do
; not affect the semantics of a program, that is, they do not change its computations or
| results, except for possibly affecting the order of computations when this is not defined by
the language, for instance the order of the operations in an intrinsic reduction function like
SUM. The data mapping directives only affect a program’s performance, not its meaning.

3.1 The PROCESSORS directive

The PROCESSORS directive declares and names one or more abstract processor arrangements,
where a ‘processor arrangement’ means a processor array or a scalar, i.e. single, processor.
For example:

'HPF$ PROCESSORS p (4), q (8, NUMBER_OF_PROCESSORS()/8), T

declares abstract processor arrays p and q of the given dimensions, and a single abstract
processor r. Note that these are abstract processors. This allows implementations the
freedom to abstract the processors declared in HPF from the real physical processors. For
example the former may actually be ‘processes’, and an implementation may be able to
execute multiple processes concurrently on each physical processor.

Incidentally, ‘NUMBER_OF _PROCESSORS ()’ is an HPF' intrinsic function that returns the
number of processors, or in some implementations processes, on which the program is exe-
cuting (see Section 10.1).

Abstract processor arrays with different shapes and total sizes may be declared, in which
case an HPF implementation may map them in an implementation-dependent manner onto
the real physical processors. However, the only processor arrangements that are guaranteed
to be supported are scalar processors and processor arrays with the same number of elements
as there are physical processors. Processor arrays with the same shape are equivalent, that
is, corresponding elements refer to the same abstract processor, but otherwise there is no
defined relation between different processor arrangements.

Processor arrangements are not first-class objects in HPF—they may not appear in
COMMON blocks nor be passed as arguments to functions or subroutines. The only way for
a PROCESSORS directive to be visible in several program units is to declare it in a module
which is USEd by the program units. Otherwise, processors arrangements must be declared
locally in every program unit in which they are used.

3.2 The DISTRIBUTE directive

The DISTRIBUTE directive specifies how a data object is to be distributed over an abstract
processor arrangement.

The distribution that can be specified for a scalar object is somewhat limited: it can
only be distributed onto a scalar processor arrangement, i.e a single processor.? Therefore
we shall concentrate on distributing arrays in the rest of this section.

In that case, a so-called distribution format is specified for each dimension of the dis-
tributee, i.e. the object that is distributed, which can be either:

2We will show later, in Section 4.3, how to store a copy of a scalar on eVery processor in a processor
array, i.e. how to replicate it.
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BLOCK [(blocksize)]
CYCLIC [(blocksize)], or

*

where [...] encloses an optional item. For simplicity we shall illustrate them for a 1-
dimensional array:

REAL a (12)
distributed over a 1-dimensional processor array:

'HPF$ PROCESSORS p (4)

BLOCK means that the elements are divided into equal, or nearly equal, size blocks of consec-
utive elements, the first of which is allocated to the first processor, the second to the
second processor, etc. If the number of elements, n, is exactly divisible by the number
of processors, p, then the blocks are of uniform size n/p. Otherwise blocks of size
b= [n/p] are allocated to the first [n/b] processors, the remaining n\ p elements form
a small block which is allocated to the next processor, and no elements are allocated to
any remaining processors. Note that the elements never ‘wrap around’ the processor
array in a block distribution.

For example:
'HPF$ DISTRIBUTE a (BLOCK) ONTO P

results in the elements being allocated to processors as follows:

g e O 8 B R B
P1 P2 b3 P4

An explicit blocksize can be specified in parentheses after the BLOCK keyword. (By
definition, BLOCK means BLOCK([n/p]) as we have said.) The specified blocksize must
be such that the elements do not ‘wrap around’ the processor array. Thus in this
example the blocksize must be > 3, as a blocksize of 1 or 2 would cause ‘wrap-around’
and be erroneous. To allow ‘wrap around’ a CYCLIC distribution must be specified.
We advise against explicitly specifying b, except in special cases, as it can give rise
to errors (if n > bp, requiring ‘wrap-around’) or inefficient processor utilisation (if
n < bp). If b is specified, we recommend that it should depend on n and p, directly
or indirectly, to avoid these problems if n or p is changed.

CYCLIC means that the first element is allocated to the first processor, the second to the
second processor, etc. If there are more elements than processors then the distribution
‘wraps around’ the processor array cyclically until all the elements are allocated.

For example:
'HPF$ DISTRIBUTE a (CYCLIC) ONTD p

results in the following allocation of elements to processors:




a  [pipelpslpalpi]pa[ps[palpr P [ps|ps]

An explicit blocksize may be specified in parentheses after the CYCLIC keyword, just
as for the block distribution. (By definition, CYCLIC means the same as CYCLIC (1).)
In this case, however, the elements are allowed to wrap around the processor array. If
they do, the distribution is often called block-cyclic. For example,

'HPF$ DISTRIBUTE a (CYCLIC (2)) ONTO p

results in the following distribution of elements to processors:

s TR ]
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Note that BLOCK(b) and CYCLIC(b) are identical in the case when there is no wrap
around, i.e. when n < bp. If that is the case, however, then it is more efficient to
specify BLOCK(b), as the extra information that there is no wrap-around considerably
simplifies address calculations.

Cyclic distributions are useful for spreading the computation load uniformly over pro-
cessors in cases where computation is only performed on a subset of array elements
or is otherwise irregular over an array. An example of this, Gaussian elimination, is
given shortly.

* means that the corresponding distributee dimension is collapsed, that is, not distributed.
If this is applied to our one-dimensional array a, the target processor arrangement
must be scalar:

'HPF$ DISTRIBUTE a (*) ONTO scalar_proc

3.3 Distributing multi-dimensional arrays

These descriptions generalise straightforwardly to multi-dimensional distributees and pro-
cessor arrays, with the words ‘element’ and ‘processor’ replaced by ‘subscript value’ and
‘processor subscript value’.

A distribution format must be specified for every dimension of a distributee. Each di-
mension is either distributed over a processor array dimension or is collapsed. Therefore, the
number of BLOCK and CYCLIC entries must equal the number of processor array dimensions,

and thg nth distributee dimension with such an entry is distributed over the nth processor
array dimension. For example:

REAL b (10,10,10,10)
'HPF$ PROCESSORS q (4,4)
'HPF$ DISTRIBUTE b (BLOCK, *, CYCLIC(2), *) ONTO q

means that b’s first dimension is distrib
dimension is distributed CYCLIC(2) ove
4 of b are collapsed, that is, for fixed su

uted BLOCK over the first dimension of q, its third
r th.e second dimension of q, and dimensions 2 and
bscripts in the other dimensions, all subscript values

in dimensions 2 and 4 are mapped to the same processor.
Here are some examples of distrib
p(4) and q(2,2):

uting a 2-dimensional array ¢ onto processor arrays
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'HPF$ DISTRIBUTE ¢ (BLOCK, *) ONTO p ?2
3
P4
'HPF$ DISTRIBUTE c¢ (*, BLOCK) ONTO p P1|P2|DP3|P4
qi1,1 | 1,2
'HPF$ DISTRIBUTE ¢ (BLOCK, BLOCK) ONTO g
2,1 | 42,2

3.4 Omitting the ONTO clause

The ONTO clause may be omitted from a DISTRIBUTE directive, in which case the distribution
is onto an implementation-dependent default processors arrangement. Typically the default
processor array has a size equal to the number of processors the program is executed on.
Thus:

'HPF$ DISTRIBUTE a (BLOCK)
is usually equivalent to:

'HPF$ PROCESSORS p (NUMBER_OF_PROCESSORS ())
'HPF$ DISTRIBUTE a (BLOCK) ONTO p

This means that omitting the ONTO clause results in a more flexibile program, as it can be
run on any number of processors without being recompiled. On the other hand, specifying
a constant processor array size should allow the compiler to generate faster code. Also,
one cannot predict the shape of a default processor array with 2 or more dimensions, as it
is undefined by the language and varies between HPF implementations. For example, the
default 2-dimensional processor array could have shape (1, NUMBER_OF_PROCESSORS()), or
(NUMBER_OF_PROCESSORS (), 1), or anything in-between.

3.5 An example code—Gaussian elimination

The example code that we shall use to illustrate HPF data mapping is the forward elimi-
nation phase of Gaussian elimination, shown in Figure 1. We use Fortran 90 array syntax
rather than DO-loops where possible, as array syntax explicitly expresses the potential for
data parallel execution and so is recommended (by us at least) for use with HPF. Since this
code may look a little unfamiliar we briefly describe what it does.

Gaussian elimination is used to solve a set of linear equations AX = B, where A is an
m X m matrix of coefficients, and B and X are m x m' matrices composed respectively
of a set of ‘right hand side’ vectors {;,4 = 1,m'} and a corresponding set of solution
vectors {z;,i = 1,m'}. The forward elimination stage reduces A to upper triangular form
by iterating over its rows r. In iteration 7, row 7 of A is divided by A(r,r), and then each
row i > r has (A(é,r)x row r) subtracted from it (potentially in parallel over the rows 7).




| Gaussian elimination of augmented matrix ’a’ without pivoting.
| The result overwrites ’a’.

INTEGER m, n, T

REAL a (m,n)
DO r =1,m
a(r, r+i:n) = a(r, r+1:n) / a(zr, r)

a(r+l:m, r+i:n) = a(r+i:m, r+1:n) - (SPREAD (a(x+l:m, 1), 2, n-r) &
% SPREAD (a(zr, r+l:n), 1, m-T))

END DO
(a): Code
1 r n
L 1]
alz, il
T : : : a(r, r+i:n)
a(rti:m,x)
N
™ | a(r+l:m,r+1:n)
m

(b): Array sections referenced in iteration r of above code

Figure 1: Forward elimination phase of Gaussian elimination (without pivoting)
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This sets the column below the diagonal element A(r,r) to 0, so iteration over r produces
the desired upper triangular form. The same operations must also be performed on B, which
is done by ‘augmenting’ matrix A with B as extra columnns, giving the (m x n) matrix a that
appears in the code. Another refinement is that in iteration r only the sections [r + 1:n] of
the rows are operated upon, as by definition the other elements become 0, except for A(r,r)
which becomes 1. For brevity this example omits ‘pivoting’, which would normally be used
to improve numerical stability, and also omits to check that diagonal elements are non-zero.

Incidentally, notice that in order to update the whole section a(r+1:m, r+1:n) in asingle
data-parallel operation using Fortran 90 array syntax, the SPREAD intrinsic function must be
used to replicate row a(r, r+i:n) and column a(r+1:m, r) into 2-dimensional arrays that
conform with, i.e. have the same shape as, a(r+1:m, r+1:n). This is rather cumbersome,
and HPF introduces a data parallel FORALL statement (now included in Fortran 95) which
allows it to be expressed more concisely, as we shall see later.

3.5.1 Distributing the data

Notice that the section of a that is involved in the computation diminishes as the execu-
tion progresses, that is, iteration r only involves the section a(r:m, r:n)—see Figure 1.
Therefore, if a were block distributed, the ‘area’ of the processor array that is utilised would
diminish correspondingly. This example is therefore a candidate for cyclic distribution, e.g.:

'HPF$ DISTRIBUTE a (*, CYCLIC) 10, cor (CYCLIC,*)
onto a 1-dimensional processor array, or perhaps

'HPF$ PROCESSORS p (4, 4)
IHPF$ DISTRIBUTE a (CYCLIC, CYCLIC) ONTO p

onto a 2-dimensional processor array. Assuming that the size of array a is larger than the
size of the processor array, this helps to spread-out the workload.

Incidentally, the question of which of these distributions is best, i.e. results in the short-
est execution time, or indeed whether a block distribution is better, is best answered by
timing the code for a variety of reasonable distributions. The optimal distribution often
depends on a number of factors, such as the problem size, the number of processors, and
the characteristics of the target computer and the HPF compiler, as it does in this case.
Such experimentation would also be needed to obtain the optimal message-passing program.
However, it is much easier to experiment with different data distributions in HPF than in
explicit message-passing programs!

3.6 Unspecified mapping

The mapping of any data object may be left unspecified in an HPF program. In particular,
it is often not specified for scalars such as m, n and r in the above example.

Although the default mapping is implementation-dependent, on distributed-memory ar-
chitectures it is likely that data objects without a specified mapping will be ‘replicated’,
that is, every processor will store a copy of them. That is certainly a sensible mapping for
scalars as their values are often needed by all processors, for instance if they are used to
govern control flow (e.g. as DO-loop indices, or in DO-loop control expressions, IF and DO
WHILE conditions, etc), or are referenced in specification expressions, array subscripts, etc.
We shall say more about replication later.




default mapping strategy is that, if the scalar is used as a DQ-
Lo ‘pa.rtitionﬁ’ the DO-loop iterations, allocating different

L onc to different processors, the index may well be ‘privatised’ f?'f thﬂ_ scope of the
iteramﬁniv ever. this will be transparent 0 the user, and the implementation will ensure that
a(jFI(J:;)pi:;S of tt;e scalar receive the same, correct value on termination of the loop so as to

: :
preserve the program's semantics.

A small refinement of this
loop index and the implementa

4 Alignment

the elements of a data array to the elements of another array,
‘aligned’ with each other are guaranteed to be mapped to the
stribution directives. Thus if an array A is aligned
of A is determined by that of B, and only the latter

The ALIGN directive relates
such that elements that are
same processor(s), regardless of the di
with another array B, the distribution

is specified. : : .
Alignment can also be specified for scalar objects. However, for most of this section we

will concentrate on array objects, returning briefly to the alignment of scalars at the end.
For example, given 2-dimensional arrays a and b with the same shape:

IHPF$ ALIGN a (:,:) WITH b (:,:)

declares that each element of a is ‘aligned’ with the corresponding element of b. This means
that, for any values of i and j, element a(i,j) will be mapped to the same processor(s)
as element b(i,j). In this simple case the same result could be achieved by distributing
the two arrays alike, but in general it is not possible to achieve arbitrary linear alignments
of arrays, for example where the elements of one array are aligned with a subset of the
elements of another, by distribution directives alone. In any case, when alignment of arrays
is intended it is clearer and safer to specify it explicitly rather than relying on it being
achieved as a side effect of distribution.

The array immediately after the ALIGN keyword is called the alignee, and the array after
the WITH keyword, with which it is aligned, is the align target. In this section we shall use
the symbols A and T as shorthand for ‘alignee’ and ‘align target’ respectively.

All elements of A are involved in the alignment relation. In the ALIGN directive, A’s
n‘?}?e is followed by a parenthesised list with an entry for each dimension which must be
either:.

* acolon ‘',
* a scalar integer named variable called an align dummy variable, or
e an asterisk ‘*’.

We will consider these three cases in turn.

4.1 Using ‘.’ in an alignee dimension

The si i i i

i olfﬂépfégase is when all of .gl’s dimension entries are ‘:’s, which is a standard Fortran 90
pecitying a whole array.® T is then in general a regular section of an array, specified

3I{nfonuna.tely, the Fortran 90 shorth
used in the form of ALIGN directive that

and for specifying a whole array by just giving its name cannot be
we shall describe here.
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using the normal Fortran 90 subscript triplet notation.®* Dimensions of A containing a

‘:’ are matched in order with dimensions of T' containing subscript triplets, and matching

dimensions must have the same number of elements selected.® Each element of A is aligned

with the corresponding element of T i.e. that in the same position within the regular section.
For example, with the declarations:

REAL a(4), t(8)

some possible alignments are:
a el )
'HPF$ ALIGN a (:) WITH t (1:4) i

] 1 00 e R

o R
'HPF$ ALIGN a (:) WITH t (2:8:2) B
; e 2 0 o g e

Nmmmm
'HPF$ ALIGN a (:) WITH t (4:1:-1) o
i bl v

As normal for Fortran 90 regular sections, any dimension of T' can contain a scalar
subscript rather than a subscript triplet. The only requirement is that the regular section
selected from T must conform with A.° In this way an array can be ‘embedded’ within a
larger dimensional array, as in the following example:

ot

ct

IHPF$ ALIGN a (:) WITH t2 (:,2)

(‘a’ embedded in t2’)

a &2
If t2 were distributed over a 2-dimensional processor array, then a would only be stored on

one column of processors, namely that which stores column t2(:,2).

4.2 ALIGN dummy variables

An alternative to using ‘:’ as a dimension entry in A is to use a dummy variable, e.g. i
or j. In that case, an expression f(i) that is linear in the dummy variable i can appear in

4A subscript triplet has the general form [I]:[u][:s], where [, u and s are scalar integer expressions and
[...] denotes an optional item. It denotes the subset of elements with subscripts from [ to u in steps of s,
the stride. If [ or u is omitted it defaults to the declared lower or upper bound of the dimension respectively,
and if s is omitted it defaults to 1; thus a solitary ‘:’ is a special case of a subscript triplet that specifies a
whole dimension.

5In Fortran 90 terminology, A and T' must conform, or have the same shape.

6As usual in Fortran 90, scalar subscripts are ignored for the purpose of determining the shape of a

regular section.
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one dimension of T.7 Different dummy variables must be used in diﬁerenF dimens_ions o.t' A,
and each dimension of T must not reference more than one dummy varlab!e. D}menslzons
of A and T involving the same dummy variable are then matched. Matchllng dlmens'l.ans
of A and T need not be in the same order, unlike the case for subgcrtpt tr[plet l‘.lOt.Elt,lon,
An element of A with subscript value 7 in the dimension concerned is then.ahgned with an
element of T whose subscript value in the matching dimension isv f (.-r.). Obviously f(i) must
be a valid subscript for T for all 7 in the subscript range of A. Notice that, be(,jause f(@) is
linear in i, it generates a regular section when applied to the complete subscript range of
7, so in this sense it is equivalent to the subscript triplet notation. For example, with the
same declarations as before:

'HPF$ ALIGN a (i) WITH t (2#i-1)
has the same meaning as:
'HPF$ ALIGN a (:) WITH t (1:7:2)

since i takes subscript values in the range (1:4).

Because this form does not require matching dimensions of A and T to appear in the
same order, it can be used to permute dimensions in the alignment mapping. This cannot be
achieved using subscript triplets alone, as dimensions of A specified by colons are matched
with subscript triplets in 7" in order of appearance. For example, an array a2 can be aligned
with the transpose of another array t2 as follows:

'HPF$ ALIGN a2 (i,j) WITH t2 (j,i)

(dimensional permutation)

a2 t2

This is a good alignment if, for example, a2(i,j) often appears together with t2(j,i) in
expressions and assignments. Indeed, dimensional permutation is the only real justification
for using the dummy variable notation—otherwise, the triplet notation is clearer and more
concise. Both forms can be used in the same directive, so the use of dummy variables can

be restricted to just those dimensions necessary for dimensional permutation. For example,
the above could equally well be written:

'HPF$ ALIGN a2 (i,:) WITH 20T )

4.3 Collapsing and replication
A %’ may appear as a dimension e

. 0 part in the alignment relation. Thus, if a ‘*’ appears in
» It means that each set of elements whose subscripts differ only in that

dimension is ali i T
o ZI;S;;I; 11:: aligned with the same element(s) of T, which is called collapsing a dimension.

"In fact the dummy variable i n

: eed not be referenced in 77
a * in A's dimension list (which w

s dimension list. If it j it i i
e explain shortly). L e
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'HPF$ ALIGN a2 (:,*) WITH t (:) filies
(2nd dimension of ‘a2’ collapsed) AR
a2 L

means that a2(i,j) is aligned with t(i) for all 1 and j. In other words, every element in
a given row of a2 is stored on the same processor(s), since each row is aligned with a single
element of t, which cannot be split across multiple processors however t is distributed. This
means that operations and assignments involving different elements in the same row will be
executed without communications, at the expense of preventing concurrent operations and
assignments on the elements of a row.

If a ‘*’ appears in one of T"s dimensions, it means that each element of A is aligned
with the whole set of elements of T whose subscripts differ only in that dimension, i.e. 4 is
copied, or replicated, over that dimension of T'. For example:

'HPF$ ALIGN a (:) WITH t2 (:,%) e
(‘a’ replicated over 2nd dimension of t2°) LR
a

means that a(i) is aligned with t2(i,j) for all i and j. If t2 were distributed over a 2-
dimensional processor array, then a copy of element a(i) would be stored on every processor
in a particular row of the processor array, namely the row of processors over which t2(1,:) is
distributed. In other words, a would be replicated over the second dimension of the processor
array. More generally, a is replicated over the second dimension of t2, and consequently
it is also replicated over whatever processor array dimension the second dimension of t2 is
distributed over.®

Replicating a variable has the advantage that its value can be read by multiple processors
without communication, but the disadvantage of complicating its updating, as all copies
must be updated. This is necessary because all copies of a replicated variable must be
kept consistent, that is, they must all have the same value at any point in the program,
because semantically there is just one copy of any given variable in the HPF program. For
large data objects, the storage cost of keeping multiple copies may also be a disadvantage.
Nonetheless, this is often a sensible storage strategy for scalar variables, particularly control
variables such as DO-loop indices. It is also a natural strategy for mapping arrays onto a
higher dimensional processor array, and may well be a good distribution for small arrays
that are read more frequently than they are written.

Collapsing and replication may be combined. Thus:

'HPF$ ALIGN a (¥) WITH t (%)
means that all elements of a are aligned with every element of t, that is, a is collapsed and
then replicated over t. This means that every processor over which t is distributed will

store a complete copy of a.
Incidentally, an alternative to using * in one of A’s dimensions is to use a dummy variable

that does not appear in T’s dimension list. Thus

2

8Incidentally, the alignment notation should not be taken too literally in the case of replication. In this
example, if the second dimension of t2 has size 4 and is distributed over 2 processors, the alignment directive
suggests that each would store 2 identical copies of a. There is an obvious optimisation!
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Figure 2: An ‘alignment tree’

IHPF$ ALIGN a2 (:,#) WITH ¢ (:)

could also be written as:

'HPF$ ALIGN a2 (:,j) WITH ¢ ()

or
IHPF$ ALIGN a2 (i,j) WITH ¢ (i)

However, we cannot replace a * in T’s dimension list by a dummy variable not appearing
in A’s dimension list, because such an identifier would be interpreted as a subscript signi-
fying embedding. In any case, we recommend the ‘*’ form, as its meaning is more easily
identifiable.

4.4 Aligning scalars

So far we have concentrated on aligning arrays. Scalars can also be involved in an alignment
relation in ways which follow straightforwardly from the above discussion: a scalar can be
aligned with another scalar or with an array element (i.e. it can be ‘embedded’ into an
array), or be totally replicated over an array, or be aligned with an array target that has
scalar subseripts in some dimensions and ‘#’s in others (a combination of embedding and
replication). Conversely, an array can be totally collapsed onto a scalar object.?

4.5 Alignment trees

'Notilce that, by ‘chaining together’ alignments it is possible to create an ‘alignment tree’ as
in Figure 2. Naturally, the alignment relation is transitive, i.e. if an element a of array A is
fﬂ'gﬂed foith element b of array B, which is turn aligned with element c of array C, then a
is also ahgnpjd with c. All data objects in an alignment tree are said to be ultimately aligned
Wltél 'the quect at Fhe ‘Toot’ of the tree. In fact, all data objects in the tree are regarded
giscf‘;ﬁignglfticeﬂ:liahgned with the root, inter.mediate objects serving only for ('()rixrepience in
R gnment. For the .salfe of s.lmplicity we recommend restricting alignments
Wept of one by not further aligning align targets.
metri:_ Sifl)lu;i-lrempha.slse t%‘at the .aﬁgnment relation is directed: it is in general not Sym-
ay can be aligned with a subset of another array, but not vice versa.

YHowever, if ignee i ;
An example ’is sth}:;v(xllhigr?ese I:.SCNar & dlﬁef-eﬂt form of ALIGN directive to that described here must be used.
unambiguous if blanks ar R ?‘5-1. This quirk arises from the desire to ensure that HPF directives aré
e insignificant, as they are in Fortran 90 fixed source form.
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4.6 Purposes of alignment

We conclude this description of alignment by summarising some of the main reasons for
using it.

4.6.1 Expressing more general mappings

Alignment allows more general data mappings to be expressed than can achieved using the
DISTRIBUTE directive alone.

For example, it is required in order to describe the mapping of a regular section of
an array. This is necessary if we want to pass a regular section, e.g. a (10:20:2), as an
argument to a procedure, and wish the corresponding dummy argument to have the same
mapping as the array section actual argument so that no remapping is performed on entry
to and exit from the procedure. We will show an example of this later.

It turns out that alignment must also be used to specify replication. There is no way
to specify that a variable is replicated using only DISTRIBUTE directives. For example,
to specify that a scalar is replicated over a processor array, it must be given a replicated
alignment with an array that is then distributed over the processor array, il

REAL:u8;0 & (n)
'HPF$ PROCESSORS p (4)
IHPF$ ALIGN WITH a (*) :: s
|HPF$ DISTRIBUTE a (BLOCK) ONTO p

If there is no suitable data array to serve as the align target, then we shall see later how to
use an HPF template for this purpose.

Having said this, if no mapping at all is specified for a variable, many HPF compilers
will totally replicate it, i.e. store a copy of the whole variable on every processor, as we said

in Section 3.6.
Incidentally, collapsing, unlike replication, can be expressed directly by the DISTRIBUTE

directive as well as via alignment. For example:

IHPF$ ALIGN a2 (:,*) WITH t (:)
'HPF$ DISTRIBUTE t (BLOCK) ONTO p

is equivalent to:

IHPF$ DISTRIBUTE a2 (BLOCK, *) ONTO p

4.6.2 Expressing intended relationships between distributions

It is clearer and safer to explicitly align objects that are intended to be distributed in a related
manner, rather than relying on alignment being achieved as a side-effect of distribution.

10Here we have used a different syntactic form for the ALIGN directive. This form must be used when the
alignee is a scalar. This quirk arises from the need to ensure that HPF directives are unambiguous if blanks
are insignificant, as they are in Fortran’s fixed source form. This alternative syntax can actually be used in
all cases, and is perhaps better as it corresponds to Fortran 90’s new syntax for declarations.
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4.6.3 Simplifying performance tuning
i i_e. by which array elements
i i i termined by the program, i.e. by : )
R larg?lyoi‘c;rations and assignments. Therefore it tends to be an

tend to be accessed ol t, the optimal distribution may depend on

tras
invari erty of the program. In con '
:“;ifsélgr});f Ié:.:te};na.l fa.ct;)rs, such as the problem size, the number of processors sinal b

characteristics of the target computer. Therefore, if the two-level mapping _Of alignment a_nd
distribution is used, tuning a program for different architectures should involve changing
t)

only its DISTRIBUTE directives and not its ALIGN directives.

5 Mapping of procedure arguments

We shall now consider how HPF handles data mapping across procedure boundaries. We
start by briefly reminding readers of some Fortran termu'lqlogy. that we shall use.

A procedure is a function or a subroutine. In the definition (i.e. the body.) of a procedure,
its arguments are called dummy arquments; they are normally named variables or dm.mny
procedure names. When a procedure is referenced, the arguments tha.t. are passed to it by
the caller are called its actual arquments; they may be variables, expressions or actual proce-
dures. Finally, Fortran 90 introduced the concept of an ezplicit interface _mto Fortran. This
means that the caller of a procedure is provided with complete information about the pro-
cedure’s dummy arguments and, for a function, its result, for example, their types, shapes,
whether they are used as input and/or output arguments, etc. The interface is automatically
explicit for intrinsic, internal and module procedures, and can be made explicit for external
procedures by declaring an ‘INTERFACE block’ that contains the required information. For
example, the following is an INTERFACE block for the subroutine Gauss_itn in Figure 3:

INTERFACE
SUBROUTINE Gauss_itn (matrix, col, row, elem, nl, n2)
INTEGER, INTENT (IN) sl 2
REAL, INTENT (INOUT) :: matrix (n1, n2), row (n2)
REAL, INTENT (IN) :: col (n1), elem

END SUBROUTINE
END INTERFACE

The basic principles governing the mapping of procedure arguments in HPF 2.0 are quite
simple. They can be expressed as follows:

» The mapping of a procedure’s dummy arguments can be specified in the same way as
for local and global variables, using the directives we have already described.

o When a procedure is referenced, its actual arguments can have a different mapping
from the dummy arguments with which they are associated. However, if any actual
argument has a different mapping from the corresponding dummy argument, then the
interface of the procedure must be explicit in the caller, and the interface must specify
the mapping directives for the dummy arguments.

In HPF, if the interface of a called procedure is explicit in the caller, and any actual
argument is not mapped as specified in the interface, then it is automatically copied to a
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temporary variable with the required mapping just before entry to the procedure to sat-
isfy the dummy argument’s mapping directives, and copied or remapped back on return.!!
Within the called procedure, therefore, the dummy arguments are assumed to already have
the mapping specified for them, and no remapping is necessary.

However, if a called procedure does not have an explicit interface, then none of its actual
arguments are remapped since their required mapping is not known. Therefore the actual
arguments must already have the same mapping as the dummy arguments or the program
will be erroneous. Hence it is safest to ensure that the interface of a called procedure is
explicit, unless one can be certain that no argument remapping is required.

We emphasise that the argument’s mapping is always restored on return, so a data object
is never permanently remapped as a side-effect of passing it as an argument to a procedure.

There are several reasons why HPF allows a data object to be remapped when it is
passed as an argument to a procedure. The most obvious is that a dummy argument may
be associated with a number of different actual arguments with different mappings, so if a
particular mapping is specified for the dummy argument, some actual arguments may have
to be remapped in order to satisfy it. Another reason is that in general expressions in HPF
have no defined mappings, so if an actual argument is an expression it may not be possible
to predict and declare its mapping. Finally, procedure boundaries are a clean and natural
place for data to be remapped, as a procedure encapsulates a segment of computation for
which the optimal data mapping may be different from that elsewhere.

5.1 An example of argument mapping

We shall demonstrate dummy argument mapping using a modified version of the Gaussian
elimination code, shown in Figure 3, in which the update in each iteration is performed
by calling a subroutine Gauss_itn. Admittedly this is a somewhat artificial example as it
probably is not worth calling a subroutine to perform just two assignments, but it will serve
for illustration.

The dummy arguments of Gauss_itn could be mapped as follows:

'HPF$ PROCESSORS procs (4,4)

'HPF$ DISTRIBUTE matrix (BLOCK, BLOCK) ONTO procs
'HPF$ ALIGN col (:) WITH matrix (:, *)

'HPF$ ALIGN row (:) WITH matrix (*, :)

'HPF$ ALIGN WITH matrix (*, *) :: elem

Dummy argument matrix is associated with the actual argument a(r+1l:m, r+l:n),
which is a regular section of an array. Suppose that a is distributed (BLOCK,BLOCK) in the
caller. Then in general a(r+1:m, r+1:n) occupies only a subset of the processors, namely
the corresponding regular section of the processor array. However, specifying that dummy
argument matrix is distributed (BLOCK, BLOCK) means that it is treated as a whole array
which is distributed uniformly, or as uniformly as possible, over the whole processor array,
as described in Section 3.2. To acquire this mapping, a(r+1:m, r+1:n) must generally be
copied to a temporary array with the required mapping before entry to Gauss_itn, and
copied back on return. For this to happen, the interface of Gauss_itn must be explicit in

the caller.

11 unless the compiler can determine that one or other of these operations is unnecessary. For example,
a dummy argument declared as INTENT (0UT) need not be copied in on entry, and one declared as INTENT
(IN) need not be copied back on return.
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INTEGER m, B, T
REAL a (m,n)

p0r =1,m .
CALL Gauss_itn (a(r+l:m,

a(r+i:m,

r+i:n),
r), a(r, r+i:n), a(r,r), m-r, n-r)

END DO

SUT.Bl;tl.JUTINE Gauss_itn (matrix, col, ToW, elem, nl, n2)
INTEGER, INTENT (IN) senly 1_12
REAL, INTENT (INOUT) :: matrix (nl, n2),
REAL, INTENT (IN) .+ col (n1), elem

row (n2)

row = row / elem
matrix = matrix - SPREAD

END SUBROUTINE

(col, 2, n2) * SPREAD (row, 1, nl)

Figure 3: Gaussian elimination with each iteration done by a subroutine call

In many HPF implementations, the value assigned to an array element is compt ited by the
processor(s) that ‘own(s)’ it, that is, store(s) it in its local memory. This is called the ‘owner
computes’ rule. In that case, the distribution specified for matrix spreads the computation
uniformly over the processor array, whereas the original distribution of the actual argument
would concentrate it on the subset of processors storing a(r+1:m, r+l:n). Therefore the
remapping reduces the computation time, as the work is distributed over more processors
50 each has less to do. We say that the processors are well ‘load balanced’. However, to this
computation time must be added the time for the data remapping before and after the call
to Gauss_itn, so it is uncertain whether the remapping would reduce the overall execution
time—that can only be determined by measurement or estimation. It would certainly not
be reduced if a were distributed (CYCLIC, CYCLIC) in the caller, as we suggested in section
3.5.1, since then the section a(r+1:m, r+1:n) would already be distributed as uniformly as
possible over the processors so the overhead of data remapping would not be offset by an
improved load balance. We will see later how to describe the dummy argument mappings
so that no remapping occurs.

‘ c.ol, row and elem are aligned with matrix. The alignment of col means that it is block
d%stnbl%ted over the first dimension of processor array procs and replicated over the second
d}mf'nsmﬂ of procs, so each column of the processor array stores a complete copy of col.
Similarly, the other ALIGN directives mean that row is replicated over the first dimension
3?111:::;2’11:00532-1;2:? Brocs has its own copy of row, and elen is replicated over both

Replicatingprow ,coleafltlyeplm’:gssoa'has § ol
i e b ar,ly i e: in t r;s way means that the. body of Gauss_itn can be
o e it nications. he array assignments in Gauss_itn are vqu'lvalent

g elemental assignments performed for all values of subscripts i and j:

row (i) = row (i) / elem
matrix (i,j) = matrix (i,j) - col (i) * row (3

The giv i
given alignments ensure that for every element assigned, the variables reference d in the
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right hand side expression are stored on the same processor. Indeed, the SPREAD intrinsic
functions in the original array assignments are a strong hint that replication is called for.

We mentioned in Section 4.3 that all copies of a replicated variable must be updated,
since they must be kept ‘consistent’. For example, consider the first assignment above, to
vector row. Each row of the processor array stores a copy of it, and all copies must be
updated. If the HPF implementation uses the ‘owner computes’ rule, then every processor
computes the right hand side expressions for all elements of row that it owns, so identical
computations are performed by every row of the processor array. In this particular case that
is not a drawback, however, as the execution time is the same as it would be if only one row
of processors stored and updated row (e.g., if “ALIGN row(:) WITH matrix(1,:)” were
specified), since all rows of the processor array do this operation in parallel.

As was the case for dummy argument matrix, the actual arguments associated with
row, col and elem do not have the specified mapping and so must be copied into and out
of Gauss_itn (though an good implementation would not copy back col and elem as they
are declared to be INTENT (IN), meaning that they are not updated). Again, this means
that the interface must be explicit in the caller.

5.2 The INHERIT directive

Suppose that Gauss_itn is a library routine and that we want it to accept any mapping for
its arguments and not to remap them. In other words, we want the dummy arguments to
‘inherit’ their mapping from the corresponding actual arguments.

This can be specified by the INHERIT directive:

'HPF$ INHERIT matrix, col, row, elem

which means that the associated actual arguments can have any mapping and will not be
remapped—even if they are array elements or sections. In general, the compiler will generate
code to handle any mapping for the arguments (unless it can somehow determine the possible
actual argument mappings).

Some dummy arguments may have inherited mapping while others have explicit map-
ping. Other data objects, including other dummy arguments, can be aligned with dummy
arguments with inherited mapping. For example:

'HPF$ INHERIT matrix

IHPF$ ALIGN col (:) WITH matrix (:, *)
LHPF$ ALIGN row (:) WITH matrix (*, :)
'HPF$ ALIGN elem WITH matrix (*, *)

inherits the mapping of matrix and replicates col, row and elem over dimensions of it.

It should be noted that while INHERITed mapping avoids any remapping of the actual
arguments on entry and exit, it can result in less efficient code inside the procedure as there
may be little or no information about the dummy arguments’ mapping at compilation time.

5.3 Transcriptive distribution

It is possible for a dummy argument to inherit some, but not necessarily all, of the actual
argument’s distribution characteristics by using asterisks in the DISTRIBUTE directive in
place of the distribution format and/or processors name. For example:

IHPF$ DISTRIBUTE matrix =* ONTO =*
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i t over which it is
. ¢ distribution format, and the processors arrangemen ( :
R T e Clauses in a DISTRIBUTE directive

distributed, are inherited from the actual a:rgt_lment.
are called transcriptive.

consisting of just asterisks e o
Howeg\;rer J'chere is a difference between the above directive and the INHERIT directive,
’ ment corresponding to matrix has a

because the above form is only legal if the actual argument :
Irf:ssing that can be described using a DISTRIBUTE directive. It would not be legal in the

example of Figure 3, since there the actual argument is a reqular Sectifm of an array, whose
mapping can only be described using alignment, as explained in Section 5.1. In this sense

the INHERIT directive is more general than the above forr.n. ] . : :
In a DISTRIBUTE directive, one clause can be transcriptive while the other is specified.

For example:

IHPF$ PROCESSORS P (5,20)
|HPF$ DISTRIBUTE matrix * ONTO P
hat matrix inherits its distribution format but is distributed over a specified proces-

al may have been distributed over a different processors
the same distribution format

means t
sors arrangement p, that is, the actu :
arrangement, in which case it will be redistributed over p using

as before.
IHPF$ DISTRIBUTE matrix (BLOCK, BLOCK)

means that matrix is to be block distributed onto whatever processors arrangement the

actual was distributed onto.
In our experience transcriptive di

ONTO *

stribution is not often used.

5.4 HPF-1 rules for argument mapping

We briefly mention that HPF-1 had different rules concerning the mapping of procedure

arguments.
In HPF-1, explicit interfaces were not required if the actual argument had a different

mapping to the dummy argument. Therefore, when compiling a procedure, an HPF compiler
could not assume, as it can in HPF 2.0, that its dummy arguments were already mapped as
specified, and would typically generate code to test the mapping and perform any necessary
remapping inside the procedure. Therefore, as an optimisation, HPF-1 provided a special
descriptive form of the mapping directives for dummy arguments, which asserted that the
corresponding actual arguments already had the specified mapping so no tests or remapping
would be performed. The descriptive form was distinguished by having extra asterisks in
various places; see [12] or [15] for details.

The descriptive form is retained in HPF 2.0 for compatibility, but its meaning has
changed. It is now a request that a warning be generated at compile time or runtime if
an actual argument needs to be remapped to satisfy the dummy argument’s mapping direc-
tives. In HPF 2.0, an explicit interface is still mandatory if argument remapping is required,
even if descriptive directives are used. We recommend that new users of HPF do not concern
themselves with or use the descriptive form.

Incidentally, it should be noted that some correct HPF-1 codes may no longer work under
HPF 2.0. This happens if the code does not have explicit interfaces for calls that require
argument remapping.

Another change is that HPF-1 allowed a dummy argument to appear in both an INHERIT
and a DISTRIBUTE directive. The meaning of this combination of directives was fairly hard
to comprehend! It is now disallowed; INHERIT and DISTRIBUTE are now mutually exclusive.
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6 Templates

HPF introduces the concept of a template, which is a virtual scalar or array, i.e. one that
occupies no storage. Templates are declared by a TEMPLATE directive, for example:

'HPF$ TEMPLATE s, t (16), u (2*n+l, 2*n+1)

Like processor arrangements, templates are not first class objects in HPF. They may not
appear in COMMON blocks nor be passed as arguments to functions or subroutines. The only
way for a TEMPLATE directive to be visible in several program units is to declare it in a
module which is USEd by the program units. Otherwise, templates must be declared locally
in every program unit in which they are used.

The sole function of a template is to provide an abstract object with which data objects
can be aligned and which can then be distributed, that is, to provide an intermediary in the
mapping of data objects to abstract processors.

For example, suppose that in the Gaussian elimination example of Figure 3, array a is
distributed as follows:

'HPF$ PROCESSORS procs (4,4)
'HPF$ DISTRIBUTE a (CYCLIC, CYCLIC) ONTO procs

Sections of a are passed as actual arguments to subroutine Gauss_itn, where they are
associated with dummy arguments matrix, col, row and elem. Further suppose that we
wish the dummy arguments to be declared with the same mappings as the actual arguments
so that no remapping occurs. This can be done using ALIGN directives as shown in Figure 4.
To help describe the mapping we have modified Gauss_itn’s argument list slightly, passing
in 3 arguments m, n and r rather than the 2 array size arguments ni and n2 used before.

Notice that the use of a template is almost indispensable in this example. The dummy
arguments are associated with regular sections of array a, so their mappings can only be
described by aligning them with equivalent regular sections of an array with the same dimen-
sions as a. (That is, they cannot be described by DISTRIBUTE directives alone.) However,
there is no such data array within Gauss_itn to serve as the align target. One possible
solution would be to declare such an array within Gauss_itn specially for this purpose, but
that would waste storage, obscure the code, and perhaps cause the compiler to warn that a
variable is declared but not used! Another possibility would be to pass the whole of array
a itself into Gauss_itn as another argument, but that would make it pointless to also pass
sections of it. Notice also that both of these ‘solutions’ involve modifying the actual Fortran
source code, as opposed to just adding directives to it, solely for the purpose of expressing
data mapping—something that is better avoided. Therefore, a template can be declared to
serve this purpose, avoiding all of these drawbacks: it occupies no storage, and has no actual
existence as a real data object in the program.

An alternative mapping for the dummy arguments is the following:

{HPF$ TEMPLATE t (m, n)
IHPF$ ALIGN matrix (:,:) WITH t (r+i:m, r+li:n)

'HPF$ ALIGN col (:) WITH matrix (:, *)
YHPF$ ALIGN xrow (:) WITH  flatrix (», )
'HPF$ ALIGN elem WITH matrix (*, *)

In this case matrix has the same mapping as the actual argument that is passed to it,
whereas dummy arguments col, row and elem are replicated over matrix as they were in
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SUBROUTINE Gauss_itn (matrix, col,

INTEGER m, n, T
matrix (m-r, n-I), col (m-1),

|HPF$
|HPF$
1HPF$
'HPF$
1HPF$
| HPF$
| HPF$

(b): Layout of dummy arguments with respect to array a (or template t)

Figure 4: Mappi :
: pping Gauss_itn’ ! :
P n's dummy arguments to have the same mapping as its actual

arguments

REAL

TEMPLATE t (m, n)

PROCESSORS procs (4,4)
DISTRIBUTE t (CYCLIC, CYCLIC) ONTO procs

ALIGN
ALIGN
ALIGN
ALIGN

row, elem, m, n, )

row (n-r), elem

matrix (:,:) WITH t (r+l:m, r+1l:n)
col (:) WITH t (r+i:m, 1)
row (:) WITH t (r, r+l:n)
WITHS e (o, )t elem
(a): Code
1 Ir n
1 T T
| la (or t)
elem | |
AT Tow
col
N
B matrix
m
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Section 5.1, which implies that their corresponding actual arguments have to be remapped
on entry and exit, but avoids communications within the body of Gauss_itn. Therefore the
interface must be explicit in this case.

6.1 Purposes of templates

We conclude our description of templates by summarising some of the reasons for using
them.

1. A template is indispensable for providing a virtual array with which to align data arrays
when there is no suitable data array to serve that purpose, as in the last example.

9. There are stylistic advantages to using templates rather than arrays as alignment
targets.

For example, if arrays are always aligned with templates, the ‘alignment tree’ is re-
stricted to a depth of one, and the ‘ultimate alignment’ of all arrays is obvious—it
is exactly as written in the ALIGN directives. This follows because templates cannot
themselves be aligned; they can only be align targets. By contrast, when arrays are
aligned with other arrays an arbitrarily complicated alignment tree can be constructed
(see Section 4.5), which can make it difficult to identify the ‘root’ object with which a
given array is ultimately aligned.

A commonly occurring situation is that several conforming arrays are to be related by
an identity alignment, so that corresponding elements of all the arrays are aligned. In
this case it is clearer to align them all with a single template, rather than to arbitrarily
choose one as the ‘alignment root’ with which all the others are aligned, or to link them
together in an ‘alignment chain’.

3. The root object of an alignment tree indicates the maximum parallelism that can in
principle be achieved for the given program with the given alignments. This is an
important characteristic of the program, so it is desirable to give the object that bears
this information a separate identity, to distinguish it from the data objects. Making

it a template serves that purpose.

4. In practice we have found that 2 convenient technique for specifying data mapping is to
align everything (that is explicitly mapped) with a single template that is declared and
DISTRIBUTEd in a separate file. This file is then INCLUDEd in all program units that
have data mapping directives.!2 Then there is only one DISTRIBUTE directive in the
whole program, and to experiment with different distributions merely requires chang-
ing this one directive, which is easier and safer than changing DISTRIBUTE directives
scattered throughout the code!

7 TRestrictions on sequence and storage association

HPF 2.0 imposes an important restriction on variables that are explicitly mapped (i.e.
aligned or distributed), which is that they may not be used in ways that depend on For-
tran 77's model of sequence and storage association. More precisely, the following Fortran 77
practices are disallowed for mapped variables:

12 more modern way of achieving the same effect is to use a module rather than an include file.
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ine to a dummy array.
rgument correspondmg y array.
. ent s an actual &
1. Passing an array elem
. hape or Size mismatch between an array actual argument and the corre-
. Havlgs a; ?npmy array, &g passing at array with shape (100) and receiving it as an
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array of shape (10,10) or shape (40)-
3. Declaring a1 array as assumed Siz€; {e. with a " in the final dimension of its shape
. Dec

ification, OF associating an actual argument with an assumed size dummy array.
specification, %

4. Belonging t0 2 storage area of a common block that is partinionml differently, or
: declared with 2 different shape in different procedures. For example in:

SUBROUTINE sl
coMMON /com/ a (1000, D (100), d (2,5), e (5,5)

END
SUBROUTINE s2
COMMON /com/ ¢ (200), d (10), e (5,5)

END

the variables a, b and ¢ cannot be explicitly mapped because they belong to a storage
area that is pa.rtitioned into variables differently in the two subroutines. d cannot
be explicitly mapped as it has a different shape in different subroutines. e can be
explicitly mapped however.

(S

. Using EQUIVALENCE to partition a particular storage area into variables in different
ways, or With different shapes. For example in:

REAL a (100), b (100), c (200)
EQUIVALENCE (a, ¢), (b, c(101))

the variables a, b and ¢ cannot be explicitly mapped for the same reasons as above.

Vari‘atl)les subject to any of these practices are called ‘sequential’ in HPF, and they cannot
be explicitly mapped. Cases 1-3 imply that both the dummy and the act ual arguments are

sequential. Strictly speaking, sequential variables should also be declared as such using the
HPF SEQUENCE directive, e.g.: .

I|HPF$ SEQUENCE :: a,b,c

1:(1) (;;ses Wik -HPF compiler cannot determine by local analysis (i.e. by analysis local
e program unit) that they are sequential; that is for dummy arguments i cases 1-2,

fo i i ‘
isrf:rcttl;lal k?rgufrinents in ca?ses 1-3 unless there is an explicit interface, and in case 4. This
o e bene to_f HP.F implementations in which the default mapping in the absence of
xplicit mapping directives is not replicated.

FOIEZLE l::g;sﬂézs‘:ii:jgzzez are tk}e basis for a technique that is widely used in ‘dusty deck’
o Fortean 77. The tachn JURAIRES N AIOTY lelocation, which was not directly supportec,i
and then ‘carve it up’ d nglrfi 151;:0 _decla.re a single large array, often called a ‘work array
passing an element of ):; cally into separate variables. It is ‘carved up’ by, for example,

it as an argument to a procedure and receiving it as an array of
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the refquired shape, whose storage therefore occupies a segment of the work-array, or by
declaring it in a common block that is partitioned and used differently in different program
units. Unfortunately, if these practices are used, the ‘work array’ and the variables it is
partitioned into cannot be distributed.

Fortran 90 provides the required dynamic memory management features by means of
automatic arrays, ALLOCATABLE arrays and POINTERs, so these practices are no longer re-
quired. However, modifying code to replace work arrays by dynamic arrays can be quite a
large task. In our experience this is often the most time-consuming part of porting a large
dusty deck Fortran code to HPF. However, the effort is probably worthwhile just for the
improved legibility and maintainability of the code, quite apart from anything else.

7.1 Other issues

This concludes our description of HPF data mapping. There are a few issues that we
have not covered, for example, the mapping of allocatable arrays, pointers or derived type
components. For full details the reader is referred to [19].

8 Concurrent execution features

Fortran 90 already contains a rich set of features for expressing data parallelism, namely its
array syntax and elemental and array intrinsic functions.

Since data parallelism and concurrent execution are central to HPF, HPF 1.0 introduced
a number of extra facilities for expressing them, namely a FORALL statement and construct,
PURE procedures, and an INDEPENDENT directive. We shall describe them in this section.

In fact, HPF’s FORALL and PURE features have been incorporated in the new revision of
the official Fortran standard, Fortran 95 [18]; indeed, they are the main additions to the
language at this revision. Nevertheless, we describe them here since readers may not be
familiar with them yet, and also because HPF imposes some restrictions on data mapping
in PURE procedures which are irrelevant in the context of normal Fortran and are therefore

omitted from the Fortran standard.

8.1 FORALL statement and construct

The FORALL statement allows a data parallel assignment to a group of array elements to be
expressed in terms of its constituent elemental assignments. For example:

FORALL (i=1:10) a(i) = b(i) + c(i+2)

has the same meaning as the array assignment a(1:10) = b(1:10) + c(3:12).

Tt is helpful to introduce some terminology for the parts of a FORALL statement. In the
above example, i is called the ‘FORALL indez’, the part in parentheses which declares the
FORALL index and its range of values is called the FORALL header’, and assignment statement
governed by the FORALL header is called the ‘FORALL assignment’.

A FORALL looks somewhat like a DO-loop over array element assignments (or at least,
a FORALL construct looks like that!). However, it has the same semantics as an array as-
signment: the expression on the right-hand side of the FORALL assignment is evaluated in
parallel for all FORALL index values, and then the results are assigned in parallel to the
corresponding variables, s0 the right-hand side expression always uses old values of array

elements. Thus:
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FORALL (i=2:9) a (1= 0.5:* (a(i-l) + a(i+l))
_a(9) equal t0 the average of the old values of its nearest

sets each of the clements a(2)
neighbours- Tt is equivalent to t

Yi=10:6/% (a(1:8) * a(3:10))

he array assignment:

a(2:9

but not to the appa.rently similar DO-100P:

D";(.j’i 0B (aG-D) * a(i+1))

ENDDO

use the term Gterations’ for the executions of the indi-

vidual FORALL assignments, as that term implies sequential rather than parallel i!:(t'(:uti%)n,
nce’ for this purpose, na.mely to mean “an execution

In this paper we usé the term ‘instd ; exec
of a FORALL assignment OT the body of & FORALL construct for a particular combination of

: S y ; there does " \g
FORALL index values”, but 1t 18 not in standard usa.ge—currently here does not appear to

be a generally accepted term for this purpose. N
The FORALL header can declare multiple indices. The general form for specifying the

range of values of a FORALL index isl: ul: s], where l,uand s are scalar integer expressions
for the lower bound, upper bound and stride respectively, and [...] denotes an optional item.
I, u and s must not depend on FORALL indices, so the ‘index space’ 18 rectangular (although
this can select non-rectangular array sections as we shall see shortly).

A FORALL assignment need not be scalar—it can be an array assignment. Furthermore,
subscripts in a FORALL assignment can be general expressions—they are not constrained in
any way. The only condition is that a FORALL statement must not assign multiple values
to any element. This condition is imposed because FORALL statements and constructs are
intended to be deterministic, as are Fortran 90 array assignments, meaning that the value
assigned to each element of the assignment variable is well-defined even though the order of
the elemental assignments is undefined. The corresponding condition for array assignments
in Fortran 90 is that, if an irregular section is assigned, all of its elements must be distinct.
Thus:

Incidentally, it 18 misleading 0

FORALL (i=1:10) a(indx(i)) = b(i)
is legal only if indx contains no repeated values.
FORALL (i=0:9, j=1:5) a(10%i+j) = c(j)

is legal (assuming that the generated subscripts are in range) as there are no duplicated

elemer}ts on the left-hand side. It should be apparent that quite general sets of elements can

be assigned by a FORALL statement!

in ‘,11:2; S:SZLTt"h:e;g;;Ezn = contain a scalar logical expression called a ‘mask’ expression;

axuted o th X 3-55_18;11m8n_t, including the evaluation of its right-hand side, is only
ed for those combinations of index values for which the mask expression evaluates to

.TRUE.. is o e
N This gives the FORALL statement a similar functionality to the WHERE statement.

FORALL (i=1:10, a(i) > 0.0) a(i) = 1.0 / a(i)

is equivalent to:
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WHERE (a(1:10) > 0.0) a(1:10) = 1.0 / a(1:10)

It may seem that FORALL duplicates the functionality already provided by Fortran 90’s
array syntax. However, the FORALL statement is sometimes clearer and more concise, and
actually provides greater functionality, allowing more general array regions, access patterns
and expressions to be described. Therefore it allows the explicit expression of data parallel
assignment in more general cases than array syntax can handle. Without it, the programmer
would be forced to use sequential syntax such as DO-loops in these cases, which hides the
data-parallelism and requires that a compiler perform extensive analysis to reveal it. This
reduces the chances of concurrent execution, as it is often impossible for a compiler to
determine statically whether DO-loop iterations can be performed concurrently.

The following are some examples of situations where FORALL is either more convenient
than array syntax, or indispensable, for expressing data parallel assignments:

e When dimensional permutation is involved. For example:
FORALL (i=1:n, j=l:n, k=1:n) a(i,j,k) = b(k,j,i)
is clearer than the Fortran 90 equivalent, which requires the RESHAPE intrinsic:
A = RESHAPE (B, ORDER = (/3,2,1/))
« To avoid the conformance rules for array assignments. For example, the following
array assignment from the Gaussian elimination code of Figure 1 requires the use of

the SPREAD intrinsic function so that all array sections conform:

a(r+l:m, r+i:n) = a(r+1:m, r+1:n) - (SPREAD (a(r+1i:m, ), 2, n-1) &
% SPREAD (a(r, r+i:n), 1, m-1))

It can be expressed more simply using a FORALL:
FORALL (i=r+1l:m, j=r+1:n) a(i,j) = a(i,j) - a(i,r) * a(r,j)

e To express subscript-dependent values. For example, the following sets each element
even(i,j) of a logical array to .TRUE. if (i + j) is even and .FALSE. otherwise:

FORALL (i=1:m, j=1:m) even(i,j) = (MOD (i+j,2) == 0)

Subscript-dependent expressions are very cumbersome to express in array syntax. The
Fortran 90 equivalent of the above is:

even = (MOD (SPREAD ((/ (i,i=1,m) /), 2, n) + &
SPREAD ((/ (j,j=1,m) /), 1, m), 2) == 0)

e To express non-rectangular array sections:

FORALL (i=1:n) ... a(i,i) ... ! diagonal of array
FORALL (i=1:m, j=i:m, J >= £y eeoalis i) cann il URPAT triangle

e To express more general array access patterns. In fact, it is possible to select elements
from an array in any fashion to form another array of any shape. For example:
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. a(ivec(i,] k), jvec(i,j,k))

FORALL (i=1:1, j=1:m, k=1:n)

m the 2-dimensional array a. Fortran 90
alor 9-dimensional section from a, in
one FORALL index (a different one for each

forms a 3-dimensional ‘rregular section’ fro
vector subscript notation could only form
h depend on only

which ivec and jvec €ac
dimension). ‘ g
The next example expresses an array assignment whose nght—ha-nd. side is a product
of two n X n arrays, oné formed from an array A by cyclically shifting each row ¢ left

med from an array B by cyclically shifting each column j up

by i places, the other for . u
by j places. This cannot be written as an array assignment, however, as this pattern

of row and column shifts cannot be expressed by array sections. The subscript ranges

are declared as 0:n-1L

FORALL (i=0:n-1, j=0:n-1) allaghim a(i,MOD(i+j,n)) * b(MOD(i+j,n),j)
If this is repeated n times, with the cyclic shifts increased by 1 each time, and the

results are accumulated into C, the matrix product C = AB is produced.

o Finally, a FORALL statement must be used when the constituent elemental assignment
involves a reference to a non-elemental function. For example, the following is a
completely data-parallel expression of the matrix multiplication C = AB, where A, B
and C have arbitrary sizes (m X k), (k x n) and (m X n) respectively:

FORALL (i=1:m, j=1:n) c(i,j) = DOT_PRODUCT (el ), bl::))

This cannot be written as an array assignment to the whole of C because of the
reference to the non-elemental intrinsic function DOT_PRODUCT. Without FORALL, the
assignment to ¢(1,3) would therefore have to be enclosed in pO-loops over @ and j.

We shall see in the next section that FORALL assignments can also reference user-defined
functions, subject to certain constraints.

A FORALL construct is also provided. This allows a single FORALL header to govern
a sequence of statements, which may be assignment statements, FORALL statements and
constructs, and WHERE statements and constructs. Incidentally, FORALL index bounds and
strides can depend on the FORALL indices of an enclosing FORALL construct.

For completeness we mention that an assignment in a FORALL statement or construct
may be a pointer assignment rather than a normal assignment.

Incidentally, because of the generality of access patterns, and therefore communication
patterns, 'that can be expressed using FORALL, there is no guarantee that any particular
FORALL \;jnll be executed in parallel. Which ones are executed in parallel depends on the
?apablht}es of the HPF implementation used. Those that are not executed in parallel will be
sequentialised’, i.e. their instances are executed in sequence, so they will still be evaluated
correctly. HoweveF, we recommend using standard Fortran 90 array syntax rather than
FORALL where possible, since this is more likely to be implemented efﬁcien-tly and in parallel.

8.2 PURE procedures

Th ; i j
ide;?;(iﬁlre()f:}f ec;glzjl of the m‘fh“d‘lal assignments in a FORALL statement is undefined—
y should all execute in parallel. Therefore, if a FORALL assignment contains a
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function reference, the function may be invoked concurrently for all FORALL index values.
In addition to returning a value, an ordinary user-defined Fortran function can contain a
variety of side-effects, such as modifying dummy arguments or variables in common blocks,
or performing I/O. Whenever such side effects can occur it is preferable that they should
happen in a well-defined order, otherwise the net result may be non-deterministic. For
example, if one function invocation writes to a variable that another reads, or two invocations
write different values to the same variable, then the overall behaviour depends on the order
of the invocations. We have already indicated that a design objective of FORALL is that it
should be deterministic, so this suggests that functions referenced in FORALL assignments
should be side-effect free.

For this and other reasons (which we explain later) it is forbidden to reference ordinary
user-defined functions in a FORALL assignment or mask expression.'3

However, HPF-1 introduced a new class of functions called ‘pure’ functions, which are
guaranteed to be side-effect free and which can be used in these contexts. They are denoted
by adding the keyword PURE before the FUNCTION keyword in the function header statement,
and must satisfy a number of constraints, which are checkable at compile-time, to ensure
that they are both side-effect free and efficiently implementable under concurrent reference.

In outline, the constraints to ensure side-effect freedom are as follows. A pure function
must not contain any operation that might conceivably change the value or pointer associa-
tion of a dummy argument or global variable ([12] gives a full list of disallowed operations), or
SAVE local variables, or reference non-pure procedures, or contain any external I/O, PAUSE,
STOP or dynamic remapping operations. Note the use of the word conceivably above; it is
not sufficient for a function merely to be side-effect free in practice. For example, a function
that contains an assignment to a global variable but in a branch that is not executed is
nevertheless not pure. This strictness is necessary to allow side-effect freedom to be checked
at compile-time. Data mapping is also restricted in a pure function as we shall describe
shortly.

‘Pure’ subroutines may also be defined, and must satisfy the same constraints except that
they may modify their dummy arguments. They are useful for a variety of purposes, for
example so that subroutines can be called from within pure functions, and so that FORALL
assignments can be defined assignments, both of which require the use of a ‘pure’ subroutine.

A pure procedure (i.e. function or subroutine) can be used anywhere that a normal
procedure can. However, a procedure must be pure if it is used in any of the following

contexts:

e in a FORALL assignment or mask expression, or a statement in a FORALL construct;

e within the body of a pure procedure;
e as an actual argument in a pure procedure reference.

When a procedure is used in any of these contexts, its interface must be explicit, and both
its interface and definition must specify the PURE keyword and the INTENT!? of its non-
pointer and non-procedure dummy arguments (though admittedly this is redundant for a
pure function as its arguments must be INTENT(IN) by definition). Intrinsic functions,
including HPF intrinsic functions, are always pure and require no explicit declaration of this

13 However, the bound and stride expressions that define FORALL index ranges can reference normal func-
tions (unless they are within an enclosing FORALL construct), as they are evaluated only once.
14Dymmy arguments can be specified as INTENT(IN), (OUT) or (INOUT), meaning respectively that they

are read, written, or both.
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| #itns to diverge to (lzl > 2)

REAL n (-100:50, -50:50)
IHPF$ DISTRIBUTE n (BLOCK, BLOCK)

INTERFACE
PURE INTEGER FUNCTION mandel (c)
COMPLEX, INTENT (IN) :: ¢
END FUNCTION mandel
END INTERFACE
(0.02*CMPLX (i,3))

FORALL (i= -100:50, j= 2E0:50) Mz ) = mandel

PURE INTEGER FUNCTION mandel (c)
COMPLEX, INTENT GIN) e
COMPLEX :: 2 :

rations for |zl to become > 2 under

="cl, 1f (lz| <= 2) after 100 !
(4.8 cigidn the
e —11is returned.

1

! Returns the number of ite
1z -> z¥x2 + C, starting at 2z
| iterations it is assumed to remain so
| Mandelbrot set) and the special valu

mandel = 0

DO WHILE (ABS (z) <= 250
z =2z%Z t C
mandel = mandel + 1

ENDDO
IF (ABS (z) <= 2.0) mandel = -1

END FUNCTION mandel

AND. mandel < 100)

Figure 5: Using a PURE function to plot the Mandelbrot set.

only MVBITS is pure; the others are not as they perform

fact. Of the intrinsic subroutines,
£ all functions that it references are pure.

I/0. A statement function is pure i

8.2.1 Functional parallelism
Figure 5 shows a program which plots the

As an example of the use of pure functions,
a pure function mandel concurrently at every

Mandelbrot set over a grid of points by calling

point from a FORALL statement.
Note that, apart from prohibiting PAUSE and STOP statements, pure functions have no

constraints on their internal control flow. Therefore, when referenced in a FORALL, they allow
‘functional’ parallelism in an HPF program, as different concurrent invocations can execute
different code.’® Thus in Figure 5, different invocations of mandel will execute different
numbers of iterations of the WHILE loop, and some will execute the assignment in the IF
statement while others do not. Apart from pure function references in FORALL, functional

180f course, SIMD architectures cannot fully exploit this potential.
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parallelism can also arise via ‘independent’ DO-loops and ‘extrinsic’ procedure references,
both of which are described later.

8.2.2 Data mapping in PURE procedures

Data mapping is also restricted within pure procedures. The dummy arguments and result
can be aligned among themselves, and local objects can be aligned among themselves or
with the dummy arguments or result, but otherwise local and dummy objects may not be
subject to any other type of mapping directives. The mapping of global variables is not
constrained however.

These restrictions are imposed because multiple invocations of the procedure may be ac-
tive simultaneously, each executing on a subset of the processors; this would allow multiple
references (for a set of FORALL instances) to be executed simultaneously on different proces-
sors. If the function can contain arbitrary data mapping directives, it might access variables
stored in the local memories of processors that it is not executing on. This cannot be imple-
mented on distributed-memory architectures using pure message-passing, as message-passing
requires that the processors at both ends of a communication execute the communication
instruction. To support this behaviour requires some degree of shared-memory support,
either in hardware or software.

For efficiency the calling program unit should have the freedom to choose the processor
subset on which to execute any particular pure procedure reference, for example to maximise
concurrency in a FORALL, and/or to reduce communication, taking into account the mappings
of other terms in an expression or assignment. This implies that, on non-shared-memory
platforms, it must also have the freedom to map the procedure’s actual arguments, result
and local variables to the chosen processor subset, just as it has this freedom generally for
variables in an expression. Therefore, a dummy argument or result may not appear in any
mapping directive that fixes its location with respect to the processor array. For example,
it may not be aligned with a global variable or template, or be explicitly distributed, or
even INHERIT its mapping, all of which would remove the caller’s freedom to choose the
actual’s mapping. The only type of mapping information that may be specified for the
dummy arguments and result is their alignment with each other, which may provide useful
information to the caller about their required relative mappings. For the same reasons, local
variables may be aligned with the dummy arguments or result, but may not have arbitrary
mappings.'®

This is not to say that the actual arguments of a pure procedure cannot be distributed.
Indeed, they can have any mapping. The constraints simply restrict the specification of their
mapping within the pure procedure, so the implementation can remap them as it sees fit.
This is one place where the programmer is largely relieved of the burden of worrying about
data mapping (expressions being another).

We can illustrate these points by considering one last version of the Gaussian elimination
code, shown in Figure 6. This time each row of matrix a is updated by calling a pure
function update_row, and this is done in parallel over all the rows in a FORALL statement. a
is distributed cyclically over a 2-dimensional processor array. Incidentally, in this example
update_row is a Fortran 90 “internal’ function, whose interface is automatically explicit in
the caller.

16 However, the implementation on non-shared-memory platforms is still complicated by the fact that pure
procedures can access common block and module variables whose mapping is fixed with respect to the

processor array.
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INTEGER m, B, T

REAL a (m,n)
|HPF$ DISTRIBUIE 2 (CYCLIC, CYCLIC)

por=1,m
a(r, r+i:n) = al,
FORALL (i=r+1:m)
a(i,r+i:n) = UP
END DO

r+1:0) / alr, r)

date_IOW (a(i,r+1:n), a(ipr): a(rsr+1:n))

"‘CONTAINS
¢actor, ref_row)

PURE FUNCTION update_Tov (row,
REAL, INTENT (IN) row (:), factor, ref_row (SIZE (row))

REAL :: update_rov (SIZE (xow))
IHPF$ ALIGN WITH row :: ref_row, update_Iow
update_row = IoW = factor * ref_row
END FUNCTION

Figure 6: Gaussian elimination with each row updated by a pure function call

An efficient implementation of the FORALL might broadcast row a(r, r+1:n) so that it
is aligned with every row a(i, r+1:n),i> T, according to the alignment specified in the
pure function'’, and then execute each instance i of the FORALL on the processors that own
(and argument) a(i, r+1:n), namely, on a subset of one

the relevant assignment variable
| update different rows

row of the processor array. Therefore different rows of processors wil
of a in parallel, and multiple invocations of update_row will be active simultaneously.

This implementation might easily be ruled out if the programmer could specify arbi-
trary mappings for update_row’s arguments and local variables. For instance, if “INHERIT
ref.row” were specified, then strictly speaking it would prevent the corresponding actual ar-
gument a(r, r+l:n) from being broadcast, so every invocation of update_row would have
to be activated on the same subset of processors—namely those owning a(r, r+l: n)—thus
sequentialising the FORALL instances.

In general each individual invocation of update_row is distributed across multiple pro-
cessors—namely the row of processors owning the argument a(i, r+l: n)—so update_row
exploits parallelism both internally and via concurrent reference. Since a pure function may
be executed on multiple processors, it is useful to be able to specify how its arguments
should be aligned relative to each other. This enables the caller to map them in a manner
that is efficient for the operations performed within the function.

8.3 INDEPENDENT directive

HPF also introduces an INDEPENDENT directive, which can precede a DO-loop or FORALL
statement or construct.

17The caller i i
e er llS iawa.re'of the dummy argument mapping specified in pure function update.row because its
explicit, as it must be when a function is referenced in a FORALL.
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If it precedes a DO-loop it asserts that the loop iterations are ‘independent’, meaning
that they can be executed in any order, and therefore concurrently, without changing the
semantics of the loop. The conditions that must be satisfied for this to apply are listed
[19], section 5.1. Unlike the case for PURE procedures, these are assertions about behaviour,
and do not imply any syntactic constraints. The D0-loop may contain procedure calls,
branches in control flow, etc, so different iterations may execute different code, giving scope
for functional parallelism. An example is:

'HPF$ INDEPENDENT
DO i=1,100
a (p(i)) = b (1)
ENDDO

which asserts that p(1:100) does not contain any repeated entries, since otherwise the same
element of a would be assigned by more than one iteration and the result would depend on
their execution order. This is therefore equivalent to the array assignment:

a (p(1:100)) = b (1:100)

which implies the same condition on p.

When it precedes a D0-loop, the INDEPENDENT directive can also have optional ‘NEW’
and /or ‘REDUCTION’ clauses (the latter of which was introduced in HPF 2.0.) The NEW clause
specifies that certain variables must be regarded as ‘private’ to each iteration in order to
make the iterations independent. That is, each iteration must be given a new, independent
copy of the variable which is undefined at the start of the iteration and becomes undefined
again at the end. This clause is only valid if this modification does not change the meaning of
the program, i.e. if the ‘private’ variables do not carry values from one iteration to another,
or into or out of the loop. The REDUCTION clause specifies that certain variables are used to
accumulate a value under a ‘reduction’ operation, e.g. +, with each iteration of the D0-loop
contributing one term to the accumulated value.

We should point out that, except in simple cases, the iterations of an independent DO-
loop may only be concurrently executable on shared-memory MIMD machines; indeed, this
particular feature has its origin in Fortran dialects for such machines. This is because of the
complete generality of data references allowed within them, which may inhibit concurrent
execution on pure message-passing systems, and of control flow, which may prevent concur-
rent execution on SIMD machines. Therefore, if a program is intended to be run on non
shared-memory architectures, we recommend the use of array or FORALL syntax rather than
independent DO-loops where possible.

If it precedes a FORALL statement or construct, the INDEPENDENT directive asserts that
the variable(s) written for one combination of FORALL indices are not referenced, i.e. read or
written, for any other combination of FORALL indices. For example:

|HPF$ INDEPENDENT
FORALL (i=1:m) a (i) = a (i+n)

asserts that the array sections a(1:m) and a(1+n:m+n) are either equivalent (i.e. n = 0) or
completely disjoint (i.e.n < —morn 2 m). This condition means that the various synchro-
nisation points implicit in a FORALL’s semantics—namely between evaluating the right-hand
sides and performing the assignments of an assignment statement, and between successive
statements in a FORALL construct—are unnecessary and can be removed. In particular this
means that FORALL assignments can proceed directly rather than via temporary intermediate
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hich is a useful optimisation. : .

sto‘ige: .‘:hl 11 (;irectives that provide information about program behaviour, the INDEPENDENT

di : ts'Wl habuld only be tual behaviour and not to try to change that
irective S

behaviour. If the information asserted by the directive is incorrect then the program is

erroneous and its behaviour is undefined.

used to assert ac

9 Extrinsic procedures

dures written in another programming language and/or

i lled extrinsic procedures. For

ine a different programming model. Such proce-dures_are ca
zifriple 1on a d'gtrigbuted-memory MIMD machine this mlght. allow an HPF program to
invoke n;essage-pa,ssing code in order to obtain forms of parallelism that cannot be achieved

in HPF, or to hand-tune critical kernels, etc. ey - .
When an extrinsic procedure is called from HPF its interface must be explicit, and it

must specify:

An HPF program can call proce

EXTRINSIC (extrinsic-spec)
before the FUNCTION or SUBROUTINE keyword in its header statement. e:rtwjnsic—spec specifies
the procedure’s programming language and/or programming model. It is a list containing
any or all of the following specifiers:

LANGUAGE = char-string, where char-string can be JHPF’, ’FORTRAN’, 'F77’, °C’ or an
hnplementation—dependent value;

MODEL = char-string, where char-string can be ’GLOBAL’, 'LOCAL’, *SERIAL’ or an im-
plementation—dependent value; and

EXTERNAL.NAME = char-string, where char-string is the procedure’s name in the extrinsic
programming language, in case it is different from the name by which it is referenced
in HPF.

Either the language or the model must be specified. The keywords LANGUAGE =, MODEL = and
EXTERNAL_NAME = can be omitted if they are specified in the above order. The combination
of an extrinsic programming language and programming model is called an ‘eztrinsic kind’.

As an alternative to the above syntax, the eztrinsic-spec can consist of just a name (not
in quotes) which serves as a shorthand for a particular extrinsic kind. The HPF 2.0 language
specification defines the following extrinsic kind names:

HPF: short for LANGUAGE="HPF’ ,MODEL="GLOBAL’ . This means HPF itself, and is the default
for a procedure compiled by an HPF compiler.

HPF_SERIAL: short for LANGUAGE="HPF’ ,MODEL=’"SERIAL’.
HPF_LOCAL: short for LANGUAGE="HPF’ ,MODEL="LOCAL’.

F77_LOCAL: short for LANGUAGE="F77’ ,MODEL="LOCAL".

The Ap?roved Extensio.ns part of the HPF 2.0 language specification defines the rules
and semantics of the extrinsic models ’SERIAL’ and ’LOCAL’, and the extrinsic linds
HPF_SERTAL, HPF_LOCAL, F77_LOCAL and *C’. However, it does not stipulate which, if any,
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ext.rins_ic kinds must be supported by an HPF implementation. Indeed, an HPF implemen-
tation is free to define its own extrinsic kinds.

The HPF_SERIAL and HPF_LOCAL extrinsic kinds in particular have proved useful and are
already widely supported by HPF compilers. Therefore we shall concentrate on them in the
rest of this section.

9.1 " HPFISERTAL

EXTRINSIC (HPF_SERIAL) means that the procedure is written in standard Fortran without
any HPF mapping directives, and it is called on just one processor, which we shall call the
‘active’ processor. Currently HPF does not provide a way to specify which processor that
is. The procedure’s variables and dummy arguments are all stored locally on the active
Processor.

When an HPF_SERIAL procedure is called from HPF, if any of its actual arguments are
distributed they are remapped so that they are stored entirely on the active processor before
entry, and their original distributions are restored after return.

Therefore, the code in an HPF_SERIAL procedure is executed just like sequential Fortran
running on a single processor. Indeed, single processor sequential execution is the essential
meaning of the ?SERIAL’ extrinsic model, regardless of the extrinsic programming language.
Thus the SERIAL model can be regarded as a means of interfacing sequential code, which
may be in a different programming language, to HPF.

9.1.1 Some uses of HPF_SERIAL

This suggests that one use for HPF_SERIAL is to ‘package’ Fortran code that forms part of
an HPF application but which one does not want to convert to HPF (or at least, not yet).
We shall call such code, i.e. code that does not have any distributed variables, ‘serial’ code.

Note that it is not really necessary to package serial code into HPF_SERIAL procedures.
It can be treated simply as HPF code that does not have any distributed variables. Then
all of its variables will be replicated, i.e. stored in their entirety on every processor, and it
will be executed identically on every processor, rather than on just one processor as in the
case of HPF_SERIAL. In most cases the HPF version will not perform any communications
since all of its variables are stored locally, so its execution time should be similar to that of
an HPF_SERIAL version, which should in turn be similar to that obtained if the code were
compiled as standard Fortran. However, in practice there may be some overheads in the
code generated by an HPF compiler even without communications, since, for example, it may
have to maintain extra information about data distribution (even for replicated variables).
Hence an HPF_SERIAL version may be slightly faster than an HPF version of a serial code.

Furthermore, there is at least one situation in which serial code can give rise to commu-
nications when compiled as HPF. That is if it performs input, e.g. in READ statements.!® In
many HPF implementations 1/0 is performed by a single processor, so a READ statement
that defines a replicated variable would cause that processor to input its value and then
broadcast it to all the other processors. This broadcast is avoided if the READ statement is
in an HPF_SERIAL procedure, since then it is executed on just one processor so there are no
other processors to communicate with.

Although there are no communications inside an HPF_SERIAL procedure, one should note
that if it is called from HPF, the HPF caller may have to perform communications before

181 /0 related communications can also occur in less obvious ways, e.g. when a STATUS = variable is defined

in a WRITE statement.
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timisation. That is if 2 section of code pertorms 7 . '
i:;:mti;g a value to each element of an array individually. It is better to replace this by a

few ‘large’ READs if possible, €-8. by inputting to the whole array at once, since a few ‘large’
communications are usually faster than many ‘small” ones- However, if that is not possible
an alternative may be to put the READ statements In an H?F_SERIAL' proced.ure so that they
do not cause any communications. Then the communications a.ssoc1at3(.i with th-e READ are
replaced by communications of the procedure’s ogtput ?,rguntients,' which are 11}{65’ to be
whole arrays rather than individual elements. This modification will pe beneficial if it Te-
sults in a net reduction in communication time that is not offset by an increased calculation

time due to loss of parallelism. ; .
Before leaving the subject of HPF_SERIAL we should say something abou_t howi to t;ompﬂe
it and how to call other procedures from it. The HPF 2.0 language specification is quite

vague on these points, and, perhaps partly because of this, to a large extent they are
implementation—dependent. Tt does say that a called procedure has the same extinsic kind
as the program unit that calls it, unless there is an explicit interface that specifies otherwise.
d from HPF_SERIAL are assumed to be HPF_SERIAL themselves unless

Thus procedures calle -SE :
otherwise specified. Another point about which we can be certain 18 that if a procedure is
declared to be EXTRINSIC (HPF _SERIAL) in its definition (as opposed to in an interface),

then it should be compiled by an HPF compiler, one obvious reason being that a normal
Fortran compiler would not undertand the EXTRINSIC keyword! However, one would expect
the HPF compiler to compile it as ‘standard’ Fortran without any HPF-specific overheads.

If an HPF_SERIAL procedure calls a large amount of other Fortran code, then one would
probably prefer to leave that code unchanged and compile it as normal Fortran, rather than
adding EXTRINSIC (HPF_SERIAL) prefixes to every function and subroutine statement and
compiling it with an HPF compiler. The portable way to do this would be for the ‘top
level’ HPF_SERIAL routine, i.e. the one called directly from HPF, to declare the routines it
calls to be F77_SERIAL or FORTRAN_SERIAL, but this extrinsic kind may not be supported.
Indeed, if it is supported then it can be used for the ‘top level’ routine as well. Anyway,
in practice many HPF implementations allow a routine that is declared in an interface to
be HPF_SERIAL to be defined and compiled as a normal Fortran routine. But this is not
guaranteed to work—it is implementation-dependent.

9.2 HPF_LOCAL

Like HPF _SERIAL, EXTRINSIC (HPF_LOCAL) also means that the procedure is written in stan-
dard Fortran without any distributed variables. However, in this case it is called concur-
rently on all processors. The variables in an HPF_LOCAL procedure are local to the processor
running that particular instance of the procedure, and they may store different values on
different processors. This is unlike the situation in HPF, where conceptually there is just
one copy of each variable, and if multiple copies of it are stored on different processors then
they all have same value.

191n practice, many compi
) y compilers treat an argument as an ‘input’ a if it not decla Py T (OUT
i t’ argument if it not declared as INTEN (ouT)
and as an ‘output’ argument if it is not declared as INTENT (IN). 5 l :
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Arguglents are passed to an HPF_LOCAL procedure exactly as they are to an HPF proce-
du.re._ This means that if an argument is a distributed array, only the locally-stored segment
of it is passed to the procedure on each processor. However, unlike the situation in HPF, the
corresponding dummy argument within the HPF_LOCAL procedure represents just this locally
stored segment, not the whole array that is accessible on the HPF caller side. The subscripts
of such a dummy array are with respect to the local segment, as though the local segment
were the entire array. In general, code within an HPF_LOCAL procedure can only reference
locally stored variables. There is no way to directly reference variables stored on other
processors (though they may be accessible indirectly by some implementation-dependent
means, e.g. by message-passing).

The interface and body of an HPF_LOCAL procedure can contain HPF mapping directives
for its dummy arguments, though not for its local or global variables. In an interface, such
mapping directives have the same meaning as for a normal HPF procedure, that is, they
specify the mapping required of the actual argument on entry to the procedure. If the actual
argument has a different mapping, the HPF caller remaps it prior to entering the HPF_LOCAL
procedure to satisfy the mapping directives, and restores its original mapping on return. In
the procedure body, mapping directives are understood to describe the mapping that the
actual argument has on entry to the procedure. Note that they do not refer to the mapping
of the dummy argument, since that is an entirely locally stored object, namely the local
segment of the actual argument. In fact, mapping directives are redundant in the body
of an HPF_LOCAL procedure. They are permitted simply to allow consistency between the
procedure’s definition and its interface®.

Notice that if an actual argument to an HPF_LOCAL procedure is a distributed array, then
in general it has a different size to the corresponding dummy argument, which is just the
local segment of the distributed array. Therefore if the dummy argument is declared with
an explicit size, that size must be wrong either in the procedure body (if it is the size of the
actual argument) or in the interface (if it is the size of the local segment). To avoid this
problem, dummy argument arrays in HPF_LOCAL procedures must be declared as assumed
shape, e.g. D (:,:), if they are associated with distributed actual arguments.

A module called HPF_LOCAL_LIBRARY is provided for use in HPF_LOCAL. It contains rou-
tines for enquiring about the shape and mapping of the actual arguments that are associated
with an HPF_LOCAL procedure’s dummy arguments, for translating between the local and
global subscripts of such arguments, and for finding the coordinates of the local processor.

To summarise, HPF_LOCAL, and in fact, the ’LOCAL’ extrinsic model generally, allows
the use of explicitly local code, that is, code that will be run on each processor exactly as
it is written. In the jargon of parallel processing, this is called SPMD (‘Single Processor,
Multiple Data’) code. This kind of programming obviously gives much more control over

exactly what happens where than HPF does.
One important use of HPF_LOCAL is to invoke message-passing code from HPF, but it

has other uses too. We shall now briefly describe two applications of it that do not involve

message-passing.

9.2.1 Coarse Grained Parallelism

arily to express fine-grained data parallelism, whereby operations

HPF was designed prim -
d on every element of an array in parallel if there are enough

can in principle be performe

20 and also to allow for situations when the procedure definition itself provides the interface, e.g. for

module procedures.
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INTEGER :: n
TYPE (struc) :: structs (n)
'HPF$ DISTRIBUTE (BLOCK) :: structs
INTERFACE
EXTRINSIC (HPF_LOCAL) SUBROUTINE calc_struct (structs)
TYPE (struc) :: structs (:)
END SUBROUTINE calc_struct
END INTERFACE

CALL calc_struct (structs)

Figure 7: Using an HPF_LOCAL procedure for coarse-grained parallelism

processors.

However, for some applications coarse-grained data parallelism is more suitable. Such
applications typically contain a set of ‘structures’ of some kind, e.g. a set of grids, each of
which can be processed in parallel with the others, although the computations within each
structure may be performed sequentially. Examples include computational fluid dynamics
and structural mechanics codes that perform simulations on complicated physical domains
which are divided into a set of more regular subdomains to simplify the calculations. The

structures on other Processors.

If different structures require different amounts of work then ‘load balancing’ may be a
problem: some Processors may have less work to do than others, anqd thus spend some of
their time idle. Hence it may be important to allocate structures to processors in a way that
€vens out the workload (assuming that there are more structures than processors). With a
little ingenuity the above scheme can be modified to allow different numbers of structures

to be allocated to each processor, e.g. by distributing an array, each element of which is an
allocatable array of structures,

9.2.2 _ Parallel I/0

o e many HPF implementations

. : : arrange for external I/0 to

Fe condu(,:ted' via a :lslngle Processor, which does ) of the I/0 operations and gathers data

rom or distributes it tq the other Processors ag necessary. This means that I/O can give
d tends




EXTRINSIC (HPF_LOCAL) SUBROUTINE read (unit,x)
INTEGER :: unit
REAL S s oW,
READ (unit) x

END

EXTRINSIC (HPF_LOCAL) SUBROUTINE write (unit,y,z)
INTEGER :: unit

REAL sihy )
WRITE (unit) y, z |
END |
\

Figure 8: Using HPF_LOCAL for parallel I/O

form I/O to its own local disk in parallel with the others. If this capability exists it is clearly
advantageous to use it, both to avoid communications within the program and to spread-out
traffic on the machine’s I/O network.

This can be done simply by enclosing the I/O statements in HPF_LOCAL procedures, as
shown in Figure 8. Then each processor READs and WRITEs its locally-stored segment of the
data to its own file—a different file for each processor. This involves no communications in
the program, and if there is a parallel filesystem it can be done in parallel by every processor.
For this to work, all I/O to a particular unit, including OPEN and CLOSE statements, must be
enclosed in HPF_LOCAL procedures. Note that this technique involves splitting-up the I/O
across multiple files, one per processor, which may not always be convenient. It is probably [
most useful for I/O to temporary files that are used only during the course of a run.

When OPENing a file in HPF_LOCAL, we recommend that it is given a processor-dependent i
filename, as shown in Figure 9. This will make it portable to systems where multiple proces-
sors share the same filesystem. Without this refinement the program would open multiple 31
files with the same name, which would be erroneous if they share a common filesystem. f

10 HPF intrinsic functions and standard library J

HPF ‘standard library’. Due to lack of space we shall simply list these procedures here. The

The final extensions in the HPF 2.0 base language are three new intrinsic functions and an ]
|
reader is referred to Section 7 of [19] for a detailed description of their arguments and use. |

10.1 HPF intrinsic functions

HPF defines a new class of intrinsic functions called ‘system enquiry’ functions. There
are two functions in this class: NUMBER_OF_PROCESSORS, which returns the total number of
processors (or in some implementations processes) on which the program is running, and
PROCESSOR_SHAPE, which returns the system-defined logical shape of the processor array
formed by these processors (or processes). On many platforms the processors are not re-
garded as being configured into an array, in which case PROCESSOR_SHAPE will probably
return -a value such as (/NUMBER_OF_PROCESSORS()/), meaning they are treated as a 1- i
dimensional array. PROCESSORS_SHAPE() can also take an optional DIM argument. In HPF
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INTEGER : . pid (NUMBER_UF_PP.DCESSURS)
'HPF$ DISTRIBUTE pid (BLOCK)

DO i-=1{, NUMBER_DF_PRUCESSUKSO
pid (i) = 4

END DO

CALL open (pid)

EXTRINSIC (HPF_LOCAL) SUBROUTINZ open (pid)
INTEGER :: pid (:)
'HPF$ DISTRIBUTE pid (BLOCK)
CHARACTER*7 :: filename

WRITE (filename,’(A4,I3.3)’) "tmp.", pid (1)
OUPEN"(UNET = 10, FILE = filename, FORM = "unformatted")
END

Figure 9: Using processor-deperdent filenames in parallel I/0

these functions may be used in specification expressions, e.g. to declare array dimensions.
We have already given some examples of this use in previous sections.

HPF also defines a new computational intrinsic function, ILEN.

Incidentally, HPF-1 extended the Fortran 90 intrinsic functions MINLOC and MAXLOC by
giving them an extra optional argument DIM for finding the locations of the maximum
and minimum elements along a given dimensicn. This extension has now been included in
Fortran 95.

10.2 HPF standard library
HPF defines a standardrlibrary of procedures in a module called HPF_LIBRARY. It contains:

* subroutines for enquiring about data mapping: HPF_ALIGNMENT, HPF_TEMPLATE and
HPF_DISTRIBUTION;

e bit manipulation functions: LEADZ, POPCNT and POPPAR;

® new array reduction functions: IALL, IANY, IPARITY and PARITY, which are analogous
to the Fortran 90 intrinsic reduction functions ALL and ANY, but apply the operators
IAND (bitwise AND), IOR (bitwise OR), IEOR (bitwise EOR) and .NEQV. (logical EOR)

respectively;

e more general reduction functions: xxx_ SCATTER for ‘combining scatter’, and xxx_PREFIX
and xxx_SUFFIX for ‘parallel prefix’ and ‘suffix’, where xxx is any of the available re-

duction operations;

e array sorting functions: GRADE_UP, GRADE_DOWN, SORT_UP and SORT_DOWN.
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11 HPF 2.0 Approved Extensions

This section briefly summarises the HPF 2.0 Approved Extensions. The reader is referred
to [19] for full details.

11.1 Extensions for data mapping

The HPF-1 directives for dynamic realignment and redistribution, REALIGN, REDISTRIBUTE
and DYNAMIC, have become Approved Extensions in HPF 2.0.

In addition, extensions are provided for mapping pointers and components of derived
types, and for mapping data to subsets of processors. The following new directives are
defined: GEN_BLOCK and INDIRECT, for expressing irregular data distributions; RANGE, for
specifying the range of possible distributions that an array may have; and SHADOW, for
specifying the size of the ‘overlap’ or ‘halo’ region that should surround the local segment
of an array to store adjacent off-processor data.

11.2 Extensions for data and task parallelism

The ON directive specifies which processor or processors are to perform a computation. The
RESIDENT directive, to be used in conjunction with the ON directive, asserts that all accesses
to a specified object within the scope of the ON directive are local to the executing processor.
The TASK_REGION directive specifies the concurrent execution of different blocks of code on
disjoint processor subsets.

11.3 Extensions for asynchronous I/O

An additional I/O control parameter is defined for unformatted READ and WRITE statements,
which instructs them to return before completing the I/, i.e. makes them non-blocking. An
accompanying new statement, WAIT, is used to wait for the I/O operation to finish. These
extensions permit I/O to be overlapped with computation.

11.4 Extensions to intrinsic and library procedures

Some new inquiry routines are defined, and some inquiry routines defined in the HPF 2.0
base language are extended to allow for the extended mapping features listed in section 11.1.
A generalisation of the Fortran TRANSPOSE intrinsic is also defined.

11.5 Approved Extensions for HPF extrinsics

The rules and semantics of the extrinsic models *SERIAL’ and *LOCAL’, and the extrinsic
kinds HPF_SERIAL, HPF_LOCAL, F77_LOCAL and ’C’, are defined as part of the Approved
Extensions, as described in section 9. A module called HPF_LOCAL_LIBRARY is defined for
use in HPF_LOCAL procedures.

12 Further information

This section lists some World Wide Web sites where further information about HPF com-
pilers and tools, tutorials, example codes, and HPF-related projects can be found. By the
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nature of s‘uch surveys the information given here is incomplete and is only intended as a
starting point for further investigation. We apologise for omissions.

In general, a good starting point for finding information on HPF is the homepage of the
HPF Forum at:

www.crpc.rice.edu/HPFF/ or
www.vcpc.univie.ac.at/information/mirror/HPFF/

This also has all versions of the HPF Language Specification, and details of how to subscribe
to the HPFF email list.

Another good starting point for finding HPF information is the homepage of the HPF
User Group (‘HUG’) at:

www.vcpc.univie.ac. at/information/HUG/

A HUG email list has also been established. To subscribe to it, send an email to:
majordomo@vcpc.univie.ac.at with the message body: subscribe hug-1.

12.1 HPF compilers and tools

Surveys of HPF compilers and tools can be found at the following sites:

www.ac.upc . es/HPFSurvey/
A survey of commercial and public domain HPF compilers, summarising the features
they support, conducted by the European Centre for Parallelism of Barcelona and
Queen’s University Belfast.

wuw.irisa.fr/pampa/HPF/survey.html
A survey of commercial and public domain HPF compilers and tools, conducted by
the PAMPA project at IRISA.

www.crpc.rice.edu/HPFF/hpfcompiler/ or
www.vcpc.univie.ac. at/information/mirror/HPFF/hpf compiler/
Information about commercial HPF compilers on the HPFF homepage.

Some currently available commercial HPF compilers are as follows:

Vendor Product URL

ACE EXPERT HPF www.ace.nl/compilers.html

APR xHPF www.apri.com/

Digital DIGITAL Fortran www.digital.com/info/ hpc/fortran/hpf.html
EPC HPF Mapper www .epc.co.uk/hpf .html

IBM xlhpf www.software.ibm.com/ad/fortran/x1hpt/
NA Software HPF Plus www.nasoftware.co.uk/

PGI pghpf www . pgroup. com/

Pacific-Sierra  VAST-HPF www.psrv.com/vast/vasthpf .html

There are also some freely available public domain HPF compilation systems. The fol-
lowing two in particular are quite mature and stable:
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Name Origin URL

ADAPTOR GMD-SCAI www.gmd.de/SCAI/lab/adaptor/adaptor home.html
SHPF U. Southampton www.vcpc.univie.ac.at/information/software/shpf/
& VCPC

Both of these systems comprise an HPF to Fortran translator and a communications library,

and can be installed on any system that has Fortran and C compilers (and a C++ compiler

for SHPF) and a message-passing implementation such as MPI. The SHPF release package

also contains an inter-procedural analysis tool for Fortran and HPF programs, called IDA.
The following are some research prototypes of HPF-related compilation systems:

Name Origin URL

Annai CSCS / NEC www.irisa.fr/pampa/HPF/annai.html

EPPP CRIM Montreal www.CRIM.CA/apar/Group/English/Projects/EPPP.html
Fortran D Rice U. www.cs.rice.edu/fortran-tools/DSystem/DSystem.html
FX Compiler CMU www.cs.cmu.edu/ " fx/

HPF+ U. Vienna www.par .univie.ac.at/hpf+/

HPFC Ecole des Mines www.cri.ensmp.fr/”coelho/hpfc.html

Pandore IRISA www.irisa.fr/pampa/PANDORE/pandore.html
PARADIGM UIUC www.crhc.uiuc.edu/Paradigm/

VFCS U. Vienna www.par .univie.ac.at/project/vfcs.html

12.2 HPF tutorials

HPF training courses and/or on-line tutorial material are available from the following:

Source URL
EPCC wuw.epcc.ed.ac.uk/epcc—tec/documents/

www.liv.ac.uk/HPC/HPFpage.html
www.npac.syr.edu/users/haupt/tutor ial/tutorial.html

U. Liverpool

U. Syracuse
VCPC, U. Vienna ww.vcpc.univie.ac.at/activities/tutorials/HPF/

Digital www.digital.com/info/hpc/f90/hpf tutorial.ps

12.3 HPF applications
The following site is building a repository of sample HPF codes, including code fragments,

kernels and full applications:

www.npac.syr.edu/hpfa/

In addition, sample HPF codes are included in the release packages for the public domain
HPF compilers SHPF and ADAPTOR (see Section 12.1), and sample codes are also available

from some of the other Web sites listed above.
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12.4 HPF-related projects
A list of some HPF-related projects is available on the HPFF homepage at:

www.crpc.rice.edu/HPFF/projects .html or
www.vcpc.univie.ac. at/information/mirror/HPFF/projects.html

In addition, many HPF-related projects, €.g. projects developing HPF applications, tools,
interfaces to standard libraries, etc, were presented at the First HPF User Group meeting
which was held in Santa Fe in February 1997. The abstracts and some of the slides of these

presentations are available at:

www.lanl.gov/HPF/
The following are some HPF-related projects funded by the European Union’s ESPRIT

programme:

ESPRIT project

URL

HPC Standards  www.ccg.ecs. soton.ac _uk/Projects/hpc-stds/

HPF+ wu.par.univie.ac.at/hpf+/

PHAROS www.vepc.univie.ac. at/activities/proj ects/PHAROS/
PPPE www.vcpc.univie.ac. at/activities/proj ects/PPPE/
PREPARE WWW . irisa.fr/pampa/PREPARE/prepare .html

13 Conclusions

HPF is a significant step forward in simplifying the programming of data parallel applications
on parallel computers, particularly distributed-memory MIMD systems. It is based on a
simple and familiar programming language and offers wide portability, 2 simple migration
od for existing Fortran codes, and the promise of high performance, s0 there is a

meth
of the foremost languages for scientific and engineering

good chance that it will become one
applications on such platforms.
Having said this, writing efficient HPF programs is not necessarily a trivial task. In-
deed, the high-level nature of the language means that it will be very easy to write hugely
inefficient code. The programmer needs a good understanding of the program and of the

HPF execution model in order to map data effectively. In addition, some old ‘dusty deck’
Fortran programs may need to be significantly re-written to convert them to efficient HPF
lar making use of some of the new features of Fortran 90 and HPF,

d FORALL syntax rather than DO-loops where possible, removing
all of these ‘optimisations’ are ‘clean’,

programs, in particu
for example using array an
sequence and storage associations, etc. Fortunately

in that they should improve code legibility as well as efficiency.
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