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Abstract

Air Quality Forecasting (AQF) is a new discipline that attempts to reliably predict atmospheric
pollution. The application has complex workflow and in order to produce timely and reliable forecast
results daily, each execution requires multiple computational and storage resources to be simultaneously
and collaboratively available. Deploying AQF on grid is one option to satisfy such needs, but requires
related grid middleware to support automated application-specific scheduling and execution on grid
resources. This paper presents our initial experience of deploying AQF on a campus grid environment
and our current efforts of developing a solution of grid-enabling AQF-like applications in Gracce project.
Gracce has the goal to provide domain users a grid platform supporting from the management of an
application and its dataset, to the automatic execution and viewing of results. In Gracce, application
workflow is described using GAMDL, a powerful data-flow language for domain users in describing
application logics. The Gracce metascheduler architecture, which includes a workflow-orchestrated
metascheduler, an event-driven workflow engine, and an execution runtime system provides the required
functionalities of scheduling application workflow in global level and coordinating workflow executions.

1 Introduction

Air Quality Forecasting (AQF) [22] is a new discipline that attempts to reliably predict atmospheric
pollution, especially high levels of ozone. The application incorporates multiple dependent computational
modules that make intensive use of numerical tools, requires high compute power for the simulation of
meteorological and chemical processes, and entails the transfer, storage and analysis of a huge amount
of observational and simulation data [6]. We participate in an effort to build such a service, with the
goal of providing timely, reliable forecasts of air quality for the Houston-Galveston region and for several
other regions in the South Central USA that have encountered problems with air quality in the recent
past [3, 4]. On-going work at the University of Houston (UH) aims to create, test and deploy an AQF
application as well as to establish a suitable development and deployment environment.

Grid technology [15], and middlewares to enable the creation of such grids, provide a potential strategy
for meeting the computational and storage needs of AQF executions. Users with large-scale problems,
such as AQF applications, may exploit multiple distributed high performance computing resources in a
grid environment to produce high quality results that cannot be achieved from single-domain resources.
As the grid technology becomes mature and standardized, deploying application on grid to efficiently use
grid powers is becoming more important than technology and standardization themselves. Additional
efforts are required to fill the gaps between grid visions and domain expectations. Yet such efforts are
still in the stage of trial and related experiences are very application-specific and technology oriented.

Including ours [2, 3], most of current approaches of grid application deployment starts with the
packaging or wrapping of legacy application codes with grid services and utilities of grid remote execution
and automatic file transfer, and presents them in a grid portal to domain users. Efforts in supporting the
automated application-specific scheduling and execution on grid resources, and thus providing users an
end-to-end grid environment (not grid technology) are very few. This paper presents our experience of
deploying AQF application on a campus grid environment and our current efforts of developing a solution
of grid-enabling AQF-like applications in Gracce project [28]. The initial efforts provided a working, but



not feature-complete solution to support AQF run on the resources across our campus grid. It is the
basis for the next stage development of a general-purpose solution in Gracce.

Gracce has the goal to provide domain users an application grid platform supporting from the man-
agement of the application and its dataset, to the automatic execution and viewing of results. In Gracce,
application coordination and collaboration, a typical example of which is workflow, is described us-
ing GAMDL, a powerful data-flow language for domain users in describing application logics. Gracce
metascheduler architecture is designed as a software above the available grid infrastructural middlewares
to provide functionalities of grid resource allocation, workflow coordination and runtime control. The
architecture includes a workflow-orchestrated metascheduler with planning and reservation features, an
event-driven workflow engine able to coordinate the scheduling process and job execution, and a runtime
system to control workflow executions.

The organization of this paper is as follows. Section 2 introduces AQF application, our initial efforts
in deploying AQF on UH Campus grid [2], and the requirements to support automatic AQF run on grid
in production quality. At the end of this section, software and projects related to these requirements
are surveyed. Section 3 presents the current two major efforts in Gracce project, GAMDL and Gracce
metascheduling architecture. Section 4 summarizes our work and its strengths.

2 Experience of AQF on Campus Grid and New Requirements

Our initial efforts in deploying AQF on grid utilized the basic functionalities provided by Globus toolkits
2.x [12] and provided a working solution to support AQF run on the resources across our campus grid
[3]. But it is not feature complete to build an application grid environment, which is our ultimate goal of
application deployment on grid. In this section, we introduce AQF application and our current deploying
approach, and analyze issues in the approach. Also based on our current experience, three additional
features that are required for grid middlewares to fulfill our goal are identified in current stage of the
project. Middlewares and efforts related to these features are studied at the end of this section.

2.1 AQF Introduction

AQF is an integrated computational model that is composed of three subsystems: the PSU/NCAR
MMS5 mesoscale weather forecast model [9], the Sparse Matrix Operator Kernel Emission System code
(SMOKE) [24], and EPA’s CMAQ chemical transport model [7]. AQF execution is a computational
sequence of the three subsystems on heterogeneous resources with increasing resolution and decreasing
geographical boundaries. Figure 1 illustrates the workflow of a nested 2-day forecasting operation over
a single region of interest by a three-domain computation. The 36km domain computation provides
coarse forecast data over continental USA, the 12km provides data across the south central USA, and the
4km forecasts air quality across a smaller geographic region. Each rectangle represents a computational
module and each arrow indicates the flow of data between modules. An AQF daily run starts with the
download of the data of ETA weather forecast analysis on 15:30PM, and should produce results before
6:00AM the next day to researches and state and local officials [22, 34]. In our experience, a sequential
run on a 256-CPU Linux cluster can only finish AQF forecast timely for 12km domain, with about 30G
data generated daily. Substantial computational and storage resources are required in order to provide
high-quality forecasting in an urban area based upon 4km and lkm domains. Enabling AQF on UH
campus grid and utilizing the parallelism of module executions in AQF workflow are two approaches we
explored for the timely and accurate forecasting in finer domain regions [2].

2.2 Initial Experience of AQF Deployment on Campus Grid

The UH campus grid currently consists of a heterogeneous cluster of Sun SMPs, a Beowulf cluster and
an SGI visualization system, with 9 TB storage, at UH High Performance Computing Center (HPCC)
[31], and clusters of Sun SMPs and Beowulf and several Sun workstations in different departments. AQF
modules are installed and configured in these resources, and disk and tape spaces are allocated for its daily
execution. Sun Grid Engine (SGE) [35] and Platform LSF [32] have been installed to manage resources
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Figure 1: AQF Application Workflow

within the individual administrative domains. Globus toolkits [12] are installed on these resources for grid
job execution and file transfer. UH HPCC serves as the CA [14] in our campus grid and is responsible for
granting grid accounts. Individual departmental resources are configured to accept only the certificates
from this CA. To make it as easy as possible for users to interact with the services provided through the
campus grid, EZ-Grid [3], a light-weight web-based portal, have been developed. It uses the Java CoG
Kit [11] to provide a convenient interface to all Globus functions, including grid authentication using
X.509 certificates and management of GSI proxies [14], job specification, submission and management,
file transfers, and grid resource information and load status.

In current campus grid setup, AQF workflow structure is described using an XML file, and a Perl
script controls AQF workflow execution and interacts with Globus in EZ-Grid portal. A module in the
workflow is described as a task in the XML file that will become a grid computational job (Module, task
and job refer to the same entity in different context, the term “module” is from application people, task
is a workflow concept and job is often used in grid context). Dependencies between modules are specified
as the parent-child relationships of tasks in which parent tasks produce the data that are consumed by
child tasks. For each task, details about the executable and resources where it is going to be launched
are hard-coded in the task RSL file [36]. The Perl script reads the XML file and controls the overall
execution of AQF tasks, including submitting jobs to grid resources, initiating file transfer when the
data are available, and resolving task dependencies. So basically, the AQF execution scenario, which is
about where, when and how each workflow task is going to be launched and a dependency is handled,
are predefined in the description XML file and the control Perl script.

There are several issues in our current solution. Firstly, computational resources are pre-allocated
for AQF tasks and are assumed to be available during task execution periods. The allocated resources
specified in task RSL file are defined by system administrators, who also reserves the resources in the local
scheduler to ensure their availabilities. Obviously, this type of human-scheduling policy is not suitable for
the changing grid environments and resource allocation should be automated to provide best decisions
according to the resource load status. Secondly, failures in a grid resource will cause the failure of the
whole AQF run if without users’ intervention. There is no scheduler to allocated resources for a task
whose dedicated resource fails. Specifying a secondary resource in the RSL is one solution, yet normally
the secondary resource is rather busy such that the task would have to wait for long period in the local
queue. Thirdly, the non-standard XML and script approach for workflow description and execution
control is error-prone and introduces lots of burden for domain users and system administrators. Domain



users are required to be a programmer for XML, Perl and RSL for their applications, which is a daunting
task in the process of AQF deployment. Instead of digging down all details of grid setup and resource
scheduling in AQF run, users expect a complete application execution environment, from graphical user
interface to final view of execution results.

2.3 New Requirements and Studies of Related Grid Middlewares

Understanding the above issues and users’ expectations, and also based on our experience in campus grid
setup and AQF deployment, we have identified three features that are required from grid middleware to
support the automatic AQF execution on grid:

e Grid Application Modeling and Description This is to provide domain users a modeling
language to describe an application so that users are relieved from the tedious details of work-
flow, execution control and grid activities. Such language should target for application people, be
powerful but easy to use and require only introductory or even no knowledge in grid technology
when describing a complex application structure, and should be easily integrated with other grid
middlewares, such as workflow and scheduling systems.

e Grid Metascheduling AQF daily run requires grid middleware to provide functionalities of au-
tomatic resource allocation for AQF workflow tasks across grid. Grid metascheduler operating on
the global level is the middleware that may possibly satisfy such needs. But an AQF job typically
consists of several dependent tasks and placing these tasks on the appropriate resources across a
grid for efficient execution is a much more complex problem than scheduling a single-executable job.
Moreover, the scheduling decision must ensure application Quality-of-Service, in our case, which
means forecasting results must be generated timely.

e Workflow Orchestration in Resource Allocations In workflow execution, the approach of
scheduling tasks on resources right after the task dependencies are resolved can not guarantee
resources can be discovered and allocated. Resource co-allocation normally requires planning of
workflow execution and advanced reservation of resources. In making these decisions, metascheduler
should consider the task execution scenario based on AQF workflow to make sure the resource co-
allocation are properly coordinated with the application workflow.

There have been lots of efforts addressing issues of scheduling in grid computing area. Globus GRAM
[19] and RSL [36] are the early, de-facto standard in providing solutions for secure job execution in
metacomputing environments. However, GRAM and Globus itself do not have grid scheduling and
brokering functionalities. DUROC [17] is an early effort in Globus 2.x to address the issues of resource
co-allocations in RSL-specified multi-request for resources. Globus GARA [13], Maui Silver [33] and
architecture defined in [10] introduced advanced reservation [23] into GRAM co-allocations architecture.
SNAP [18], which extends Globus GRAM and GARA, proposes a service negotiation protocol into grid
scheduling process. Pegasus [8] addresses workflow job scheduling issues as AI planning in constructing
and execution workflow from application logic workflow.

Although issues related to grid scheduling have been researched in different projects, efforts to de-
velop a fully functional grid metascheduler are very few, and to our best knowledge, none of them
addresses workflow orchestration issue in resource allocations. Community Scheduler Framework (CSF)
[26] implements a number of low-level services as a development basis for implementing a fully functional
metascheduler. Maui silver [33] scheduler jobs across Maui-managed resources and is not standard based.
GRASP [29] aims to provide an OGSI-compliant resource allocation and reservation services following
the requirement of Grid Scheduling Architecture proposed by Grid Scheduling Architecture Research
Group of GGF [30]. Nimrod/G [20] is an resource management and scheduling system with focus on
computational economy in scheduling tasks based on their deadlines and budgets. MARS Metascheduler
[1] is an on-demand scheduler which discovers and schedules the required resources for a critical-priority
task to start immediately. We also studied efforts in addressing various issues in grid scheduling.

Efforts that address scheduling in workflow community are also very limited. Triana [5] workflow
engine schedule tasks across multiple resources either in parallel or in a pipeline. GridFlow [16] executes a



grid workflow according to a simulated schedule. Pegasus [8] separates abstract workflow with the concrete
workflow and relies on Condor DAGMan [27] to schedule the workflow jobs. For workflow descriptions that
directly interest us, several languages are studied based on our AQF needs. Business Process Execution
Language (BPEL) [25] is an XML-based workflow definition language that allows businesses to describe
enterprise business processes. BPEL is in low-level web service level, which additional extension and
wrapping development needed to make it easy of use by grid application owners. XScufl [39] is a specific
workflow definition language for Taverna project, but XScufl is too fine grained for describing scientific
applications. Abstract Grid Workflow Language (AGWL) [21] “programs” application control flow using
constructs of imperative programming style. For data-flow applications, users have to translate the
dataflow into control-flow to use AGWL.

3 Gracce: Building An Application Grid Environment

Driven by AQF application, Gracce (Grid Application Coordination, Collaboration and Execution)
project [28] was proposed to develop a set of grid middlewares for grid application deployment. The
vision of Gracce is to provide domain scientists an application-specific grid environment, supporting from
the management of an application and its dataset, to the automatic execution and viewing of results. In
Gracce solutions, domain users are only required to provide application descriptions and major resource
requirements, and Gracce is responsible for allocating grid resources for tasks, placing tasks on resources
for execution and monitoring them, and returning the results back to users. The three required features
for automatic AQF execution on grid are addressed by two efforts in Gracce: the Gracce Application
Modeling and Description Language, and Gracce metascheduler architecture.

3.1 Gracce Application Modeling and Description Language (GAMDL)

GAMDL is a high level abstraction language for domain scientists to describe their applications in grid
environment. GAMDL is a data-flow modeling language, compared with other solutions that describe
application control-flow structures. GAMDL models an application in its domain logics and users do
not need to extract application control structures to construct a workflow. By using conditioned prop-
erties and conditioned pipes, GAMDL allows control-flow to be defined within dataflow. GAMDL also
introduces the concept of multiple-value property (mvproperty) for easy description of similar application
entities, such as files, modules, and executables. In a GAMDL document, a universal ID (uid) is used
to identify and reference an application entity, which may not be defined in the same document. This is
very helpful in programming and mapping application entities with persistence services, such as RDBMS,
XML and Java Object.

GAMDL is specified using XML-Schema and a grid application is represented as a gridApp XML doc-
ument with four major child elements: appExecutables, appDataFiles, appModules and appMdDeps,
which specify the required executables, files, modules, and module dependencies respectively in an ap-
plication. A task in application workflow is modeled as a “module”, a term domain users are familiar
with. A module, which consists of executables, input/output file set, and its grid job specification, is
normally a computation unit that will become a single-executable grid job. Dependency relationships be-
tween modules can be specified in either parent-children pattern indexed by parent tasks or child-parents
pattern indexed by child tasks. In each relationship, dependencies are specified by pipes, whose pipeln
specifies the piped output of parent tasks, and pipeOut specifies the piped input of child tasks. Each
pipe is conditioned by a boolean string that will be evaluated runtimely to decide whether the piped
dependency should be handled or not.

The GAMDL description for AQF is attached in appendix. In AQF grid App XML document, mvprop-
erties are defined by either including from files (uhaqf .mvproperties in this example) or defining them
directly(mdName). The file uhaqf.mvproperties defines three mvproperties: md={mm5,smoke,cmaq},
dmsz={36K, 12K, 4K}, and day={d1,d2}. The mdName ($md, $dmsz, $day), defined as uhaqf-$md-$dmsz-$day
($ operator on a mvproperty refers to its values), is extended into 18 (which is #md*#dmsz*#day, #
operator on a mvproperty returns the number of its values) values. So this one sentence is enough to
reference all the AQF computational modules. AppExecutables, appDataFiles and appModules are all



defined here as uid reference and they should be specified in other documents. AppMdDeps are specified
using child-parent relationships, which is easily understood from the GAMDL itself. For detail about
GAMDL, we refer readers to [28].

3.2 Gracce Metascheduling Architecture

We define metascheduler as “a grid middleware that discovers, evaluates and co-allocates resources for
grid jobs, and coordinates activities between multiple heterogeneous schedulers that operate at the local
or cluster level”. There are two aspects covered in this definition, the “scheduling” aspect which addresses
resource co-allocation issues for applications requiring resources simultaneously at multiple sites, and the
“meta” aspect that concerns about the brokering from global grid requests onto resource local schedulers.
To address these two aspects, our metascheduler design separates job execution from the metasched-
uler, making scheduling process independent from underlying grid middleware for job execution. This
allows metascheduler to work with various remote execution utilities. The separation is achieved by the
concept of Execution Plan (EP) for a workflow job. The job EP contains scheduling decisions for each
task and mechanisms for dependency handling, and a separate runtime system translates the EP into
execution-specific scripts for job execution and controls. The defined architecture has three components,
Metascheduler, EPExec runtime system, and GridDAG workflow engine. To deploy this architecture in
a grid environments, we assumes the installation of Grid Information Services. The complete setup is
shown in Figure 2.
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Figure 2: Gracce Metascheduling Architecture

GridDAG is an event-driven workflow system to coordinate the execution of tasks with dependen-
cies. GridDAG events, such as completion of tasks or dependent file availabilities are WS-Notification
NotificationMessages produced and consumed by corresponding entities in the architecture. The sequence
of these events are referred as event chains and two GridDAG modules, chain builder and deployer setup
and install these chains. GridDAG DepResolver keeps track of the events along job execution and invokes
certain handlers upon receiving events. GridDAG agents, installed optionally on grid resources generate
the outgoing events and consume incoming events locally.

Metascheduler plans job execution and co-allocates resources for workflow tasks. Two modules are
designed for these two functionalities, MetaPlanner and MetaAlloc. MetaPlanner predicts the execution
scenario for each task; and MetaAlloc searches for suitable resources, negotiates the resource provision
and makes reservation with resource providers. The whole metascheduling process is orchestrated by
job workflow and the output of this process is a job EP which includes resource allocation decisions and
mechanisms for task dependency handling.

EPExec submits task jobs following the EPs, and monitors and manages the execution of these
tasks. EPExec also works with GridDAG for handling task dependencies. During execution, EPExec
may adjust EP according to the real execution scenario. Being independent from metascheduler, EPExec



can be developed to support different methods of job submission and remote execution utilities. EPExec
has three components, EXEpre (Execution Preparation), sJSCS (simple Job Submission and Control
Service) and RTadj (RunTime Adjuster).

The life-cycle of a grid workflow job in this architecture is described briefly below:

1. Grid users submit to the Metascheduler a workflow job (possibly with preferred deadline) specified
using the application GAMDL.

2. Metascheduler plans the execution of the tasks and the dependency handling mechanisms, and
allocates resources for tasks executions. As a result, the job’s EP that includes the decision details
is outputted.

3. The job’s EP is forwarded to EPExec for job execution, which submits tasks to their allocated
resources and monitors their executions.

4. During execution, GridDAG agents and DepResolver handle task dependencies and decide whether
task dependencies are resolved. EPExec also handles failures and makes required adjustments when
the executions are not following the plan.

3.2.1 Gracce metascheduler

Gracce metascheduler plans job execution and co-allocates resources for workflow tasks by the two mod-
ules, MetaPlanner and MetaAlloc. MetaPlanner predicts and identifies the execution windows for each
task and MetaAlloc searches a list of candidate resources, negotiates and makes the agreement with re-
source owners of resource provision. A task’s execution window (EW), represented by a <EWstarttime,
EWlength> pair, is a time period in which task execution shall be. EWstarttime is the window start-
time and EWlength denotes the length of this window. The metascheduling process is orchestrated by
job workflow so that execution orders of dependent tasks are kept and parallelism of execution of tasks
without dependencies are employed.

Given a workflow job, the scheduling process starts with the allocation of resources for the first task
in the workflow by the MetaAlloc. When resources are allocated, MetaAlloc also identifies the task’s
EW. Then, metascheduler processes the child tasks of the first task. First, MetaAlloc discovers a list of
candidate resources for each child task and calculate the costs of file transfer between the resource for first
task and the candidate resources for child tasks. Secondly, MetaPlanner predicts the task EWs on each
candidate resource. EWstarttime is calculated by adding three time value together, the EWstarttime and
the EWlength of the first task, and the cost for dependency handling; and EWlength is equal to task’s
wall-clock execution time. Thirdly, the predicted task EWs associated with each candidate resources
are processed by MetaAlloc again, which will choose the best resource and finally reserve the resource
for each task. Metascheduler then moves on to process other tasks until the last one. For tasks with
more than one parent tasks, MetaPlanner considers the one with latest EW in prediction. Brother tasks
will normally have overlapped EW, which means that they may be in execution at the same time. In
calculating any time value and task EW, certain grace periods or buffer time are applied.

MetaAlloc allocates grid resources for jobs, mainly computational resources for tasks in a sequence
of resource discovery, negotiation, and reservation. In resource discovery, MetaAlloc looks up in Grid
Information Services the resources that satisfy task resource requirements and are also available during
its EW. The process of filtering resource is split into two stages to ultimately identify a list of candidate
resources for the given task’s specification. In first stage, resources are selected by a simple match-making
of each attribute of task’s specification with static resource information. The resources on which the task
is able to run are picked to be further evaluated according their runtime information. So in second stage,
selected resources are checked for their availabilities during task EW and MetaAlloc finally identifies a list
of candidate resources. For each of these candidates, MetaAlloc reservation negotiates with the resource
local schedulers about resource provision and makes agreement on the availability of resources. For a
list of discovered candidate resources, MetaAlloc requests reservation for resources during task’s EW and
this is considered as a negotiation process. If local schedulers grant this request, MetaAlloc chooses the
one that can provide the earliest EW for the task. A reservation ID is returned which will be used to



access the reservation. If no reservation could be made for all the candidates, grace periods are added
to the EW and MetaAlloc requests reservation again for other wall-clock periods within the EW until a
reservation is made. If MetaAlloc cannot reserve resources for the task, metascheduler stops on this task
and forwards the partial EP to EPExec to launch the job. During job execution, MetaAlloc attempts
the resource allocation steps periodically for this task until decisions are made.

3.2.2 GridDAG Workflow System

GridDAG is our event-driven workflow system able to coordinate the execution of dependent tasks of a
workflow job. Events are notification about status change of jobs or file transfers, data availabilities, or
other situations defined by users for resource accounting and monitoring purpose. The event producers
detects certain situation or change of status, generate the corresponding event messages and distributes
them. The event consumers receive an event and then take certain actions or invoke event handlers. The
GridDAG event mechanism is developed using WS-Notification standard [38] and the concepts of event,
event producers and consumers map to the situation, NotificationProducer, and NotificationConsumer
in WS-Notification specification. A Subscriber is an entity that acts as a service requester, sending the
subscribe request message to a NotificationProducer.

As shown in Figure 2, four components are designed in GridDAG to support the eventing mechanisms,
event chain builder, chain deployer, GridDAG agent, and DepResolver. The chain builder reads job
execution plan forwarded from metascheduler and generate the event chains according to the EP. An
event chain is a sequence of the events flowing between the participating producer and consumers in the
predefined order. The chain builder also decides who are the producer, consumer, and Subscriber; and
what events are going to be generated by each producer and to be received by each consumer. The chain
deployer sends subscription requests to producers. A Subscription represents the relationship between
a consumer, producer, and related event messages. These relationships constitutes the runtime event
chains of a GridDAG job. GridDAG agents installed on each grid resources coordinate the runtime event
activities in a distributed fashion by playing several roles at the same time. First, as the event producer,
detects events occurred on the host resources, and generates and sends out event message. Secondly, as a
consumer, receives messages about the availability of dependent files on remote resources or locally, and
takes actions accordingly, such as pulling files. Another GridDAG module, DepResolver is configured to
received all event notifications and keeps track of the states of tasks’ dependencies (a task may have more
than one dependencies). When all dependencies of a tasks are resolved, DeResolver takes certain actions,
which are typically sending requests to EPExec for job submission or control.

3.2.3 EPExec Runtime system for Job Execution and Management

EPExec executes workflow jobs by carry out its Execution Plan. EPExec has three main functional
modules, EXEpre (Execution Preparation), sJSCS (simple Job Submission and Control Service), and
RTadj (Runtime Adjuster). EPExec’s EXEpre fills in job EP the required information for job submission
and workflow control. sJSCS is a simple utility answering requests from EPExec to submit single-
executable jobs and control them. EPExec RTadj identifies differences between the job execution and the
job EP, and makes certain adjustments on the execution so that it follows the EP.

When a job EP is forwarded to EPExec for execution, EPExec first calls EXEpre to setup execution
related details; and then calls sJSCS to submit the job of the first task to its allocated resources, thus
begins the execution cycle of the workflow job. Task job is submitted using its resource reservation
ID and the task EWstarttime are set in the resource local scheduler. A successful submission returns
a global job ID, which EPExec uses for job monitoring and control. During job execution, GridDAG
agent and DepResolver work together to handle task dependencies. For data dependencies, file transfer
can be in either destination-pull or source-push mode. In destination-pull mode, GridDAG events on
source resources sends events about file availabilities to destination GridDAG agent, which then fetches
files and sends events to GridDAG DepResolver about file arrivals. For source-push mode, when files
are available, source GridDAG agent transfers them to the destination resources and send events to
DepResolver indicating that the intermediate files have been transferred. As the overall coordinator of



dependency handling, DepResolver keeps track of the status of the dependencies of all tasks and decides
whether dependencies of a task are all resolved.

If job execution does not follow the EP, RTadj is responsible to adjust the mismatch to make sure
that tasks are executed on the allocated resources during the reserved time frame. RTadj categorizes job
execution into four situations depending on how much task executions deviate from the EP. In the first
situation, tasks are executing within their EWs and no adjustment is needed. In the second situation,
a job completes after its EW, but the difference is within the grace periods of its child tasks so that
they all can be started within their EW. In the third situation, the task’s late completions go beyond
the grace periods of their child tasks and cause their execution not to complete within the resource
reservation time frame. Instead of killing those jobs, we configure local scheduler to allows them to finish.
Currently, RTadj does not make adjustment for the situation two and three and relies on the allocated
buffer time in task EW to automatically repair this. In the fourth situation, the tasks’ late completions
cause the expiration of reservation of its child tasks. In this case, EPExec submits these jobs without
using reservation, yet the jobs may be held in the resource local queues. So, after submitting them, RTadj
will request metascheduler to discover other resource for these tasks. If some resources are discovered and
allocated, EPExec submits another copies of these tasks to these resources. During execution, EPExec
kills the one that it thinks will be completed later than another one. In doing this, RTadj tries its best
to make up the lost time in past job execution and minimizes the negative impacts on the execution
of later tasks. If cannot make up these delays and it is almost impossible to follow the original plan,
RTadj will consider re-scheduling for the rest of tasks. RTadj forwards the sub graph of job GridDAG
to Metascheduler to do re-planning and re-allocating. Re-scheduling may cause low resource usage or
wasting because of the cancellation of the reservation that has already been made. Metascheduler should
avoid such cancellation by scheduling other jobs onto these reservations.

4 Conclusions

AQF is a typical application that requires several computational resources simultaneously and collabora-
tively available to produce air quality forecasting results in timely fashion. While a grid environment has
potential to satisfy such requirement, lots of efforts are still needed to fill the gap between grid community
and domain scientists. This paper presents our efforts to provide solutions for domain scientists to enable
their applications on grid. Driven by AQF application and based on our past experiences of grid de-
ployment in UH campus grid, the ongoing Gracce project attempts to provide an end-to-end solution for
automatic application execution on grid environments. Using middlewares of Gracce, domain scientists
are only required to specify their application logic structures and major resource requirements, Gracce
is responsible to allocate grid computational resources for application tasks, launch the application and
deliver the results back to users.

There are two major efforts in Gracce project in current stage: GAMDL and Gracce metascheduler.
GAMDL provides a very intuitive means to model an application for grid computing. GAMDL’s data-
flow style in describing an application reflects the application original logics, requiring no efforts from
users to extract application control-flow. The mvproperty concept makes GAMDL to be very powerful
in describing similar application entities and a GAMDL description document is very concise and read-
able. Gracce metascheduling effort researches grid scheduling issues for workflow jobs, defines the term
“Grid metascheduler” and proposes a workflow-orchestrated metascheduling architecture. The architec-
ture integrates solutions to scheduling related issues in grid area, such as resource co-allocation, service
negotiation and resource reservation, and workflow execution planning.
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Appendix: GAMDL Description for AQF Application

<gridApp uid="uhaqf05" xmlns="http://.../gamdl"
xsi:schemalocation="... gamdl.xsd">
<name>UH-AQF-2005</name>

<mvproperty file="uhaqf.mvproperties"/>
<mvproperty name="mdName ($md,$dmsz,$day) ">
<value>uhaqf-$md-$dmsz-$day</value>
</mvproperty>

<include href="aqfexe.xml"/>

<include href="aqffiles.xml"/>

<include href="aqfmd.xml"/>

<appExecutables>
<executable uidRef="uhaqf-$md"/>
</appExecutables>

<appDataFiles>

<file uidRef="$mdName ($md, $dmsz, $day)-in1"/>
<file uidRef="$mdName (mm5,$dmsz,$day)-in2"/>
<file uidRef="$mdName (mm5, $dmsz, $day)-in3"/>
<file uidRef="$mdName (cmaq,$dmsz,$day)-in2"/>
<file uidRef="$mdName (cmaq,$dmsz,$day)-in3"/>
<file uidRef="$mdName (cmaq,$dmsz,$day)-ind"/>
<file uidRef="$mdName ($md, $dmsz, $day)-outl"/>
<file uidRef="$mdName (mm5, $dmsz, $day)-out2"/>
<file uidRef="$mdName (mm5, $dmsz, $day)-out3" />
<file uidRef="$mdName (smoke, $dmsz,$day)-outl"/>
<file uidRef="$mdName (smoke, $dmsz, $day) -out2"/>
<file uidRef="uhaqf-postpv-$day-inl1"/>

<file uidRef="uhaqf-postpv-$day-outl"/>
</appDataFiles>

<appModules>

<module uidRef="$mdName ($md,$dmsz,$day)"/>
<module uidRef="uhaqf-postpv-$day"/>
</appModules>

<appMdDeps>
<CPsRship uid="smoke-mm5-$dmsz-$day-CPs">



<childMd uidRef="$mdName (smoke, $dmsz,$day)"/>
<parentMd uidRef="$mdName (mm5,$dmsz,$day) ">
<viaPipe>
<pipeInFile uidRef="$mdName (mm5,$dmsz,$day)-outl"/>
<pipeOutFile uidRef="$mdName (smoke,$dmsz,$day)-inl"/>
</viaPipe>
</parentMd>
</CPsRship>
<CPsRship uid="cmaq-smoke-$dmsz-$day-CPs">
<childMd uidRef="$mdName (cmaq,$dmsz,$day)"/>
<parentMd uidRef="$mdName (smoke,$dmsz, $day)">
<viaPipe>
<pipelnFile uidRef="$mdName (smoke,$dmsz,$day)-outl"/>
<pipeOutFile uidRef="$mdName (cmaq,$dmsz,$day)-in1"/>
</viaPipe>
<viaPipe>
<pipelnFile uidRef="$mdName (smoke,$dmsz,$day)-out2"/>
<pipeOutFile uidRef="$mdName (cmaq,$dmsz,$day)-in2"/>
</viaPipe>
</parentMd>
</CPsRship>

<CPsRship uid="mmb5-12k-36k-$day-CPs">
<childMd uidRef="uhaqf-mm5-12k-$day"/>
<parentMd uidRef="uhaqf-mm5-36k-$day">
<viaPipe>
<pipelInFile uidRef="uhaqf-mm5-36k-$day-out3"/>
<pipeOutFile uidRef="uhaqf-mm5-12k-$day-in3"/>
</viaPipe>
</parentMd>
</CPsRship>
<CPsRship uid="mm5-4k-12k-$day-CPs">
<childMd uidRef="uhaqf-mm5-4k-$day"/>
<parentMd uidRef="uhaqf-mm5-12k-$day">
<viaPipe>
<pipeInFile uidRef="uhaqf-mm5-12k-$day-out3"/>
<pipeOutFile uidRef="uhaqf-mm5-4k-$day-in3"/>
</viaPipe>
</parentMd>
</CPsRship>
<CPsRship uid="cmaq-12k-36k-$day-CPs">
<childMd uidRef="uhaqf-cmaq-12k-$day"/>
<parentMd uidRef="uhaqf-cmaq-36k-$day">
<viaPipe>
<pipelInFile uidRef="uhaqf-cmaq-36k-$day-out2"/>
<pipeOutFile uidRef="uhaqf-cmaq-12k-$day-ind"/>
</viaPipe>
</parentMd>
</CPsRship>
<CPsRship uid="cmaq-4k-12k-$day-CPs">
<childMd uidRef="uhaqf-cmaq-4k-$day"/>
<parentMd uidRef="uhaqf-cmaq-12k-$day">
<viaPipe>
<pipelInFile uidRef="uhaqf-cmaq-12k-$day-out2"/>
<pipeOutFile uidRef="uhaqf-cmaq-4k-$day-ind"/>
</viaPipe>
</parentMd>
</CPsRship>

<CPsRship uid="mm5-2d-1d-$dmsz-CPs">

<childMd uidRef="uhaqf-mm5-$dmsz-24"/>

<parentMd uidRef="uhaqf-mm5-$dmsz-1d">
<viaPipe>
<pipelInFile uidRef="uhaqf-mm5-$dmsz-1d-out2"/>
<pipeOutFile uidRef="uhaqf-mm5-$dmsz-2d-in2"/>
</viaPipe>

</parentMd>

</CPsRship>

<CPsRship uid="cmaq-2d-1d-$dmsz-CPs">

<childMd uidRef="uhaqf-cmaq-$dmsz-2d"/>

<parentMd uidRef="uhaqf-cmaq-$dmsz-14">
<viaPipe>
<pipelInFile uidRef="uhaqf-cmaq-$dmsz-1d-outl"/>
<pipeOutFile uidRef="uhaqf-cmaq-$dmsz-2d-in3"/>
</viaPipe>

</parentMd>

</CPsRship>

<CPsRship uid="postpv-cmaq4k-$day-CPs">

<childMd uidRef="uhaqf-postpv-$day"/>

<parentMd uidRef="uhaqf-cmaq-4k-$day">
<viaPipe>
<pipeInFile uidRef="uhaqf-cmaq-4k-$day-out2"/>
<pipeOutFile uidRef="uhaqf-postpv-$day-ini"/>



</viaPipe>

</parentMd>
</CPsRship>
</appMdDeps>

<startMdUid>uh-aqf-mm5-36k-1d</startMdUid>
</gridApp>



