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Abstract—DataRaceBench is a dedicated benchmark suite to
evaluate tools aimed to find data race bugs in OpenMP programs.
Since its initial release in 2017, DataRaceBench has been widely
used by tool developers to find the strengths and limitations of
their tools. The results also provide an apple-to-apple comparison
of the state-of-the-art of data race detection tools. In this paper,
we discuss our latest efforts to enhance DataRaceBench. In
particular, we have added support for Fortran language and
some of the newest OpenMP 5.0 language features. We have also
added new kernels representing new patterns from literature
and other benchmarks (e.g., NAS Parallel Benchmark). To
reduce duplicated code patterns in the benchmark suite, we have
designed a distance-based code similarity analysis, combining
both static and dynamic code features. Finally, we dockerize
tools and streamline the entire benchmarking process to quickly
generate a dashboard showing the state-of-the-art of data race
detection of OpenMP programs. The enhanced DataRaceBench is
released as v 1.3.0, with 222 newly added benchmarks. 56 of them
are in C, and the remaining 166 are in Fortran, reproducing the
C programs’ nature. Our experiments show that this new version
can spot more limitations of the current data race detection tools,
with significantly reduced user efforts needed to run experiments.

Index Terms—Benchmarks, OpenMP, Data Races, Tools,

I. INTRODUCTION

DataRaceBench (DRB) is a dedicated benchmark suite to

evaluate tools aimed to find data race bugs in OpenMP

programs. It is an open-source benchmark suite designed to

systematically and quantitatively assess the effectiveness of

data race detection tools. DataRaceBench includes a set of mi-

crobenchmark programs with or without data races, written in

OpenMP, the popular programming model for multi-threaded

applications. Since its initial release in 2017, DataRaceBench

has been widely used by tool developers to find strengths and

limitations of their tools and to facilitate tool development [30,

3, 27, 6, 12, 11, 18]. We also publish the latest results on

GitHub to provide an apple-to-apple comparison of the state-

of-the-art of data race detection tools.
However, the latest version of DataRaceBench v 1.2 still

lacks many desirable features. It supports only C/C++ and

OpenMP 4.5. It is still labor-intensive to use the benchmark

suite to evaluate different tools. Last but not least, it is chal-

lenging to add new benchmark programs without introducing

duplicated test cases.

In this paper, we discuss our efforts to enhance

DataRaceBench to address its limitations mentioned above.

In particular, this paper has the following new contributions:

• We have added equivalent Fortran versions for existing

C/C++ benchmark programs.

• We have added additional benchmark programs to cover

some of the latest OpenMP 5.0 language features.

• We have collected new kernels representing new patterns

from literature and other benchmarks (e.g., NAS Parallel

Benchmark [4]).

• To reduce duplicated benchmark programs, we explored a

simple distance-based code similarity analysis, combining

both static and dynamic features of OpenMP loops.

• The test process has been improved to allow users to

select customized subsets of benchmarks to evaluate their

tools. We have also dockerized the tools to streamline

the entire benchmarking process to generate a dashboard

presenting the state-of-the-art.

• Using the enhanced DataRaceBench, we have re-

evaluated several available data race detection tools

and generated more comprehensive results showing their

strengths and limitations.

A new release of v 1.3.0 of DataRaceBench contains 338

benchmarks, compared to 116 in v 1.2.0, including newly

added 56 C and 166 Fortran kernels. These 338 benchmarks in-

clude 42 GPU-based kernels, 4 kernels extracted from the NAS

Parallel Benchmark, and 46 kernels representing OpenMP 5.0

features. Our experiments using the enhanced DataRaceBench

shows that it can spot more limitations of the current data race

detection tools, with significantly reduced user efforts needed

to run experiments.

II. ENHANCEMENTS TO DRB

DataRaceBench was created as a common and comprehen-

sive benchmark suite to provide an apple-to-apple compar-

ison of data race detection tools for OpenMP. By design,

DataRaceBench includes both positive and negative tests.

Positive tests are OpenMP programs with known data races,

while negative tests are programs which are data race free.

With both positive and negative tests, one can easily check if a

given data race detection tool can generate an expected positive
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or negative report for each test. For example, if a tool correctly

identifies and reports the known data races in a positive test,

we record a true positive for the tool. Similarly, we can record

true negative, false positive, and false negative for every test

result of a given tool. With these positive and negative counts,

standardized quality metrics, such as precision, recall, and

accuracy, can be calculated for each tool being evaluated.

More details about how we calculate these metrics are given

in Section. III-B.

This section discusses different enrichments to the

DataRaceBench. We also give details about the attempt to

reduce redundant benchmark programs and to simplify the

testing workflow using dockers.

A. Inclusion of Fortran 95 support

In the field of HPC, there are three prominent languages

- C, C++, and modern Fortran (Fortran 90/95/03/08). The

popular OpenMP and MPI libraries for parallelizing code

are developed for these languages only. Further, many legacy

codes in physics are written in Fortran. The ease of use and

huge codebase in Fortran bolsters a need for a benchmarking

framework to evaluate various tools for their correctness in

identifying data races in OpenMP kernels.

To implement Fortran support to the existing

DataRaceBench Framework, we have replicated the current

C/C++ versions of the microbenchs from the DataRaceBench.

Additionally, we have added features like WORKSHARE,

which are only supported in Fortran. DataRaceBench contains

three kernels from the PolyBench suite written in C. Since

converting the complete program into Fortran is a tedious

task, we have converted those C programs’ nature into similar

smaller Fortran kernels. In this way, we have included all

the possible kernels present for the C/C++. Entirely, we have

added 166 Fortran programs.

We tried to find tools that can automatically convert

OpenMP C programs to equivalent OpenMP Fortran programs,

but we could not find any such tools. Therefore we used

manual translation instead. While writing Fortran kernels, we

encountered several hurdles as follows.

1) Initially, for an N-Dimensional array, Fortran’s index

begins with 1, whereas in C, it starts at 0. To address this,

Fortran presents a medium to begin indexing with 0 using

INTEGER ARR(0:2). In a few straightforward scenarios,

we have incremented the values by 1 to get the lower and

upper bounds for an array.

2) Unlike in C, where most of the default passing method

is pass-by-value, it is by default pass-by-reference in modern

Fortran. This default passing method can be switched using

the %VAL built-in function or VALUE attribute and the %REF
built-in function in the argument list of a CALL statement or

function reference [31].

3) Due to the lack of static keyword in Fortran, we have

represented static objects using save attributes to preserve the

value of a variable local to a subroutine across subroutine calls.

For example, integer, save :: var.

4) Additionally, we can not assign an Integer to a

Character array in Fortran, like in C (line 6 in List-

ing 1). To accomplish this, we had to use write() to

cast Integer first into a String (line 8 in Listing 2)

and then assign it to a Character array (line 9 in List-

ing 2). This explicit conversion may lead to data race in

DRB047-doallchar-orig-no.f95. To overcome this

differing nature between the C version and the Fortran version,

we privatized the str variable in the Fortran version.

Listing 1: C: DRB047 - One dimension array computation

with finer granularity

1 char a[100];
2 int main() {
3 int i;
4 #pragma omp parallel for
5 for (i=0;i<100;i++)
6 a[i]=a[i]+1;
7 return 0;
8 }

Listing 2: Fortran: DRB047 - One dimension array

computation with finer granularity

1 character(len=100), dimension(:), allocatable :: a
2 character(50) :: str
3 integer :: i
4 allocate (a(100))
5

6 !$omp parallel do private(str)
7 do i = 1, 100
8 write( str, ’(i10)’ ) i
9 a(i) = str

10 end do
11 !$omp end parallel do

5) The added paramount challenge we faced was array-

ordering in C and Fortran. While C arrays are predominantly

stored in row-major order, Fortran arrays are stored in column-

major order. We have made the required adjustments to support

these features. For a 2-D array, we have warranted correct

indexing by converting the row-indexing to column-indexing

and vice versa.

Listing 3: C: DRB014 - Data race caused due to

out-of-bound access

1 double b[100][100];
2 #pragma omp parallel for private(j)
3 for (i=1;i<n;i++)
4 for (j=0;j<m;j++)
5 b[i][j]=b[i][j-1];

Listing 4: Fortran: DRB014 - Data race caused due to

out-of-bound access

1 allocate (b(100,100))
2 !$omp parallel do private(i)
3 do j = 2, n
4 do i = 1, m
5 b(i,j) = b(i-1,j)
6 end do
7 end do
8 !$omp end parallel do
9 deallocate(b)

The above listings present an example, where we took care

of the column-major indexing in Fortran while translating a
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C kernel. Listing 3 is a C version of DRB014, where the

outermost loop is parallelized (line 4). But the inner level loop

has out of bound access for b[i][j] when i=2 and j=0.

The b[i][j-1] on line 5 will cause memory access to a

previous row’s last element, b[1][3], and hence the data

race. To elucidate the same behavior in Fortran, presented

in Listing 4, we took care of the column-major ordering

in Fortran. We ensured that there are out-of-bound access

and loop-carried dependency on line 5, causing the data race

when i=1 and j=3. It will access b[i-1][j], resulting

in b[0][3], which in turn is b[4][2] due to linearized

column-major storage of the 2-D array.

6) Lastly, pointers in Fortran are intricate. For example,

a procedure pointer must not be referenced unless it is a

pointer associated with a target procedure. An entity with

the POINTER attribute must not have the ALLOCATABLE,

INTRINSIC, or TARGET attribute, and it must not be a

coarray. We have employed ASSOCIATED intrinsic func-

tion to find the association status of a pointer. Ultimately,

while writing kernels in Fortran, we have accounted for the

eccentricities, as mentioned above.

B. Inclusion of OpenMP 5.0 and GPU specific kernels

Many novel features have been added to the OpenMP 5.0

while DataRaceBench v 1.2 only supports some of OpenMP

4.5. Below are a few listed OpenMP 5.0 features [17] which

may lead to data races caused by human errors:

• Extended teams construct for host execution

• taskwait with dependences

• mutexinoutset task dependences

• Multidependence Iterators (in depend clauses)

Additionally, we have included various possible GPU of-

floading kernels. It is to incorporate data races on hardware

accelerators. We have also introduced kernels having data

race from the DataRaceOnAccelerator [27] benchmark suite.

The extension will outfit DataRaceBench to recognize data

races and notify when a kernel is executed on GPU in

contrast to a CPU. There is considerable work going on in the

form of ARCHER [2], PRUNER [26], ARCHERGEAR [30],

SWORD [3] to identify the data races in parallel programs. We

have taken care of extracting the example OpenMP programs

mentioned by these papers too, which were not covered earlier

in our benchmark suite.

To maintain the completeness of the DataRaceBench, we

have included all new kernels in both C/C++ and Fortran

95. It will enhance the framework’s capability and extend

the outreach, and DRB can be applied across data race

detection tools to evaluate them more exhaustively. Also,

data race kernels on hardware accelerators will check for

unsynchronized behavior across host and device. We have

ensured that there are positive and negative scenarios for

a kernel. Continuing the existing Property Labels presented

in the DataRaceBench [20], we have included them for all

the newly added kernels in C/C++ and Fortran95. Those

kernels which are using accelerator directives, we have placed

them under label Y5, Accelerator data races, and

N5, Using accelerator directives.

Listing 5: DRB144 - Data race caused by missing

synchronization across teams

1

#pragma omp target map(tofrom:var) device(0)

2

#pragma omp teams distribute parallelfor

3

for (int i=0; i<100; i++){

4

#pragma omp critical

5

var++;

6

}

We give an example of the newly added tests in Listing 5.

In this example, the map-type at line 1 is tofrom. The value

of the var is always copied from the device environment

to the host. The team construct will generate a league of

teams in which the first thread will be liable for the associated

region’s execution. The distribute parallel at line

2 will enable parallel execution by multiple threads that

are members of multiple teams. Since, critical construct

synchronizes only within a team, there will be a data race

at line 5 in var in a Non-uniform memory access (NUMA)

architecture. To circumvent this, one should use reduction
clause to have a per team instance of var.

The microbenchs must be accurate in themselves. There

should not be any accidental or human errors. The exactness is

maintained by executing the corresponding kernel on a range

of compilers with warning options turned on. We ran them

through correctness tools, like Valgrind, to assure no memory

leaks, to confirm the correctness.

C. New kernels representing new patterns from benchmarks

Some well-known OpenMP benchmarks, such as the NAS

Parallel Benchmark [23], are data race free code. However,

when we investigated those benchmarks via dynamic data

race detect tools (e.g., Intel Inspector [16], ROMP [12],

Archer [2], ThreadSanitizer [28], and so on), a few tools

reported data races in those benchmarks. For example, In-

ter Inspector reported data race in the function lhsx(),

lhsy() and lhsz() in the SP program. ThreadSanitizer

missed to recognize the omp barrier directive and Inter

Inspector could not deal with the omp master directive in a

convoluted code employing conditional compilation using the

OpenMP macro, _OPENMP.

Many of these code patterns were not covered in the original

release of DataRaceBench. We decided to extract them and add

them to our benchmark suite. We ensured that the original and

our extracted kernel would cause the same data race detection

result for four tools.

Listing 6 is a simplified version of the code extracted

from the NPB SP program. When we ran NPB through

data race detection tools, Intel Inspector and ThreadSanitizer

reported data race in function lhsx(), lhsy(), and lhsz(). Archer

and ROMP reported no data race, which is expected. After

extracting this kernel and reducing it to a simplified version

by removing non-contributing lines to the data race, we reran

the tools. As expected, Intel Inspector and ThreadSanitizer

reported the False Positive at line number 7 and 11. On
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manually investigating, we found that there is no data race

since there is an explicit barrier between critical and single

sections.

Listing 6: DRB172 - Simplified version of a loop pattern

from NPB’s SP program

1 #pragma omp parallel default(shared)
2 {
3 #pragma omp for
4 for (i = 0; i < 10; i++) q[i] += qq[i];
5

6 #pragma omp critical
7 q[9] += 1.0;
8

9 #pragma omp barrier
10 #pragma omp single
11 q[9] = q[9] - 1.0;
12 }

D. Distance-based similarity analysis

With the addition of more test programs to DRB, there is a

plausibility that several kernels in various benchmarks have

similar patterns causing the data race. To avoid duplicated

benchmark programs, we explored a simple distance-based

similarity analysis. The distance-based similarity analysis re-

lies on feature vectors representing loops. A feature vector

contains static information (such as OpenMP directives and

clauses), dynamic information generated by data race detection

tools (e.g. Archer, ROMP, ThreadSanitizer, and Intel Inspec-

tor), and ground truth. The feature vector is very flexible to

include an arbitrary number of fields. Currently, the feature

vector is defined using the following formula:

�A = (Directive, Clause,Archer result, Intel result,

Romp result, Tsan result,Ground Truth)
(1)

Table I presents the detailed information about each feature

in a vector. To encode all the OpenMP directives (in total, 87

directives) one obvious choice is to use a single field with a

value range of [0, 86], stored in either a binary or integer

field. However, this single field encoding for all directives

is problematic. Firstly, the distance between two different

directives (e.g., pairs encoded as 1 and 85 vs. 2 and 10) would

be very different, while we want the distance to be the same for

any pair of different directives. Secondly, single field encoding

can not handle multiple occurrences of different directives.

To overcome these problems, we encoded each directive

(and clause) into one dedicated field. Each field has either 0

or 1 as value. If a loop has any directive, the respective field

in the feature vector will have an integer value 1. Else, it will

be 0 by default. The same rule applies to the clause’s field.

For tools result features, we encode four possible outcomes

in one field with a value range of [-2, 1]. We do want to give

more weight to segmentation fault and time out errors since

they are an unusual situation. A loop causing such errors will

have a longer distance compared to ground truth when we

calculate cosine distance.

To generate the feature vectors, we have used OpenMP

Extractor [22] to get the loop information for each kernel.

Feature Value
Range

Encoding
Fields

Description

Directive [0,1] [E0-
E86]

87 directives are flattened into the
first 87 elements in the vector. The
existing directive’s value is set to
1, else 0.

Clause [0,1] [E87-
E122]

The next 36 integer elements are 36
flattened clauses. If the value is 1,
the test case contains that clause.

Archer [-2,1] E123 One integer element for data race
result by Archer. -2 represents time
out. -1 represents the segmentation
fault. 0 represents no data race. 1
represents the data race.

Intel [-2,1] E124 Data race result by Intel Inspector.
Same as Archer.

Romp [-2,1] E125 Data race result by Romp. Same as
Archer.

Tsan [-2,1] E126 Data race result by Threadsanitizer.
Same as Archer.

Ground
Truth

[0,1] E127 Ground Truth, whether a loop has
a data race or not.

TABLE I: Feature vector’s definition and encoding methods

The OpenMP Extractor is a tool built using Clang. It stores

the information about OpenMP loops in a JSON format. We

read the JSON file and convert contained pragma and clause

information into the fields of our feature vectors. We also add

the data race result from four tools as additional features of

our feature vectors. If the tool detects data races, the value will

be 1. Otherwise, it will be 0, signifying false by default. When

a tool reports a segmentation fault on compile time (CSF) or

during runtime (RSF), the value should be -1. If a tool reports

runtime time out (RTO), the value should be -2.

For example, DRB162-nolocksimd-orig-gpu-no.c
has one OpenMP loop. That loop has target teams
distribute parallel for directive and map clause

information. The OpenMP Extractor will extract the following

information in the following Json format.

Listing 7: OpenMP Extractor information

1 "parallel loop 1":{
2 "file":"micro-benchmarks/DRB162-nolocksimd-orig-gpu-

no.c",
3 "function":"main",
4 "loop id":"1",
5 "pragma type":"target teams distribute parallel for

",
6 "offload":"true",
7 "multiversioned":"false",
8 "map tofrom":["var"],
9 }

Referring to Listing 7, DRB162 has one directive and one

clause. In the feature vector, the 68th element should be

set to 1 for the target teams distribute parallel
for directive, and the 114th element set to 1 for the map
clause. For the data race detection result, four tools re-

ported results of CSF, TN, TN, and FP, respectively. The

corresponding values should be -1, 0, 0, and 1. Since

DRB162 has no data race, the ground truth should be set

to 0. Combining all the information, the feature vector for
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DRB162-nolocksimd-orig-gpu-no.c will be as fol-

lows:

(0, ..., 0, 1, 0, ..., 0, 1, 0, ..., 0,−1, 0, 0, 1, 0) (2)

There are many ways to calculate vector distances. For

simplicity, we select Cosine Distance, which is a way to

calculate the distance between two non-zero vectors of an

inner-product space. It shows the similarity of two vectors by

cosine value, theta (θ). The range of Cosine Distance is from

[-1,1]. Since we used the integer value for vector, the dot

product value could be negative of two vectors. If two vectors

are more similar, the cosine distance will be closer to 1, and

the degree for two vectors will be closer to 0◦. Otherwise, it

will be closer to -1, and the degree will be closer 180◦. It is

derived from the Euclidean dot product formula and is defined

as follows:

cos(θ) =
�A · �B
| �A|| �B| =

∑n
i=1 AiBi√∑n

i=1 A
2
i

√∑n
i=1 B

2
i

(3)

We save existing benchmark programs’ feature vectors as

a reference. Before adding any new kernel, similarly, we

generate the feature vector for the new kernel and correlate

against the previously saved ones by analyzing the distance of

two vectors to determine the similarity.

The distances among existing loops, in the current bench-

mark suite, can also be calculated. A n*n distance matrix (n is

the total number of loops in DataRaceBench) can be generated.

We convert the matrix into a heat map to show the distance

among these loops. If two loops are similar, the color is a

darker shade of blue. Otherwise, the color is redder. This helps

us identify similar loops within the current DataRaceBench.

E. Improving the Workflow for DRB

Users have reported that it is difficult to install data race

tools. It is also difficult to use the tools properly to process

the files of DataRaceBench to generate final results. They also

want the flexibility to test an arbitrary set of benchmarks,

instead of always testing all of them. We have enhanced our

workflow to address these user requirements.

Fig. 1: The workflow of DataRaceBench (DRB)

Figure 1 presents the high-level enhanced workflow. A user

only needs to submit a single command with a parameter to

call the check-data-race.sh script. The script will automatically

read the parameters given by the user. The parameters are used

to select a set of test cases, languages, and tools. We added

new features that allow the user to perform partial tests of

DRB microbenchmarks. For example, if a user only wants to

test the unique features of OpenMP5.0 with a specific tool,

he/she only needs to add required OpenMP5.0 test files into

a configuration file and define the tools that the user wants.

As a result, users have full control over which set of tests and

tools to be used.

Another script, test-hardness.sh, will automatically run the

specified tests with the selected tools. It also saves generated

binary files, output, and log files into a result folder. After

running the data race detection tools on the test programs, the

raw results are saved as a CSV file. At last, the script will

automatically calculate the statistical metrics and remove all

trash files.

Each data race detection tool has different requirements for

the supportive compilers, library dependencies, and command-

line options, and so on. To relieve the users from installing and

configuring each tool, instead, we have dockerized the DRB

with each tool’s image in the docker container. By using the

Docker container, users can use, modify, and develop DRB

rapidly. Without bothering about installing tools, they can

download and evaluate the tools anywhere on any machine

with the DRB docker container.

We also updated the Tool Evaluation Dashboard of DRB

to show the state-of-the-art. The new DRB reports the tool’s

failure rates and the statistic analysis metrics in the final

report. Users can evaluate the test file support rate of the tool

intuitively. The enhanced DRB can automatically calculate

the False Positive, True Positive, False Negatives, and True

Negative. It also reports the five standard metrics: Recall,

Specificity, Precision, Accuracy, and F1 score to evaluate the

performance of tools. The metrics are calculated based on four

possible results of a tool, as shown in Table II.

III. EXPERIMENTS

This section details the software bundled in the docker

images, the tools we selected, the hardware we use for our

experiments using DataRaceBench v 1.3.0.

A. Software and Hardware Configurations

We ran DataRaceBench on Lassen [15] cluster hosted at

Livermore Computing Center. The machine has 2 Sockets,

16 Core(s) per socket, 4 thread(s) per core, 128 CPU(s),

and NVIDIA Tesla V100 GPU. There are 4 GPUs and 2

IBM POWER9 processors (dual-socket) with hyperthreading

support per compute node. To obtain results of Intel Inspector,

we also ran the DataRanceBench on the Carina machine at

the University in North Carolina. This machine has 2 Intel(R)

Xeon(R) Gold 6230N CPUs and an NVIDIA Tesla V100 GPU.

We evaluated DataRaceBench on four data race detection

tools: Archer, Intel Inspector, Romp, and ThreadSanitizer.
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Tool Result
Ground Truth

Recall Specificity Precision Accuracy F1 Score
True False

True TP FP
TP / ( TP + FN) TN / ( TN + FP) TP / ( TP + FP) (TP+TN) / (TP + FP + TN+ FN) 2 * (P * R) / (P + R)

False FN TN

TABLE II: Definition of metrics (Recall, Specificity, Precision, Accuracy and F1 Score)

Table III shows the information about the versions,

compilers, and flags used specifically for each tool.

For C/C++ test cases, we used Clang/LLVM(6.0) as a

compiler for Archer. For Intel Inspector, we used icc

compiler with max source option using -collect ti3
-knob scope=extreme -knob stack-depth=16
-knob use-maximum-resources=true flag. The

ROMP used the GCC compiler and Threadsanitizer used

Clang/LLVM(10.0) with the flags mentioned in the table

III.

To evaluate these four tools using DRB on Fortran test cases

was a bit convoluted. Since Romp is race detection tool based

on binary instrumentation, we used gfortran compiler with

flag -fopenmp -lomp -ffree-line-length-none.

In some cases, like DRB043-adi-parallel-no.F95,

program uses C header and library files. We use the

GCC compiler with a -c option to generate the object

file and link it with gfortran. For Intel Inspector, we

used ifort to compiler the Fortran test cases with flag

-qopenmp -free -Tf. We used icc to compile it with

-c flag to generate object file and cross-link with ifort.

Threadsanitizer uses Clang as compiler, so we used gfor-

tran with -ffree-line-length-none -fopenmp -c
-fsanitize=thread flag to generate object files. And

then used clang with -lgfortran flag to link all object file

together. In Archer, we used GCC to generate an object file

and link it with Clang. Archer is similar to Threadsanitizer. We

used gfortran to the compiler with the -c option to generate

an object file. And then, use the clang-archer link and compiler

with -larcher flag.

We have executed each test program in DRB using eight

threads for the five iterations. From the past research work, it

was found that the tools perform reasonably well with eight

threads. The result does not change significantly with more

number of threads. Five iterations ensure that there is no bias

introduced by a tool. Ultimately, we apply a union policy to

decide on the presence of data race. The union policy refers

to a scenario where a tool reports data race presence at least

once in five iterations. In that case, the tool is deemed to

report a data race. In this paper, we didn’t manually check

the four tool’s output line by line. We only compare the four

tool’s output with ground truth of each test file in DRB while

performing the statistical analysis. The total time for running

the DRB varies from half hour(Archer) to four hours(Romp).

B. Metrics and Results

We have summarized the result for each test program and

published the detailed results for all the programs and tools

on our Tool Evaluation Dashboard 1. It contains the tools’

execution result for C/C++ and Fortran test cases. The True

Positive (TP) are ones where tools reported data race, and

there is a data race(s) in the program. False Positive (FP)

represents cases where tools reported data race(s), and there

is no data race(s) in the program. True Negative (TN) are

scenarios where a tool did not report any data race, and there

was no data race in the program. Finally, False Negative (FN)

represents scenarios where a program has a data race(s), but

a tool did not report it.

To address the cases where a particular tool could not

compile (due to unsupported feature(s) specific to a version)

or encountered runtime error, we have the following tags.

We use CSF for Compile-time Segmentation Fault, CTO for

Compilation Time-Out, RSF for Runtime Segmentation Fault,

and RTO for Runtime Time-Out.

Table IV shows the statistical metrics. It contains the TN/FN

and TP/FP results for the four tools in addition to the metrics

such as recall, precision, specificity, and so on. We also added

a new metric test support rate(TSR). The TSR is the ratio of

how many test files are successfully compiled and executed

by a tool. The adjusted F-1 score is the F-1 score multiplied

by the TSR. The adjusted F-1 score can show the true ability

of a tool.

From Table IV, we can see that, for C/C++ test programs,

Intel Inspector has the highest TP, lowest FN, and best recall.

Archer and ThreadSanitizer have the lowest FP. Also, Thread-

Sanitizer has the highest TN and best specificity, precision,

accuracy, and Adjusted F1. ROMP has the best test support

rate. For Fortran test programs, Intel Inspector and ThreadSan-

itizer have the highest TN. Also, Intel Inspector has the highest

TP and adjusted F1. Along with ROMP, it shares the best test

support rate(TSR) score. Archer has the lowest FP, and best

recall, specificity, precision, and accuracy. ThreadSanitizer has

the lowest FP and FN. It also has the best specificity, and

precision. However, Archer and ThreadSanitizer’s Test Support

Rates are low. Compared with previous results, Archer and

Romp have more CSF test cases. Overall, with more test

cases, the accuracy and F-1 score reduced since tools can not

correctly detect the data race(s) in new test cases. Thus, FP

and FN increased, and performance has declined. Besides, we

used union policy for five-run iterations resulting in increased

False Positive. If a tool reports data race even once out of five

runs, we consider it FP. Especially, when we investigated Intel

Inspector, it indicates the min-max data race from 0 to 1. Due

to the union policy, we perceived it as FP.

Table IV also shows that the tools’ accuracy has a range

of [0.7073,0.9024] for C/C++, while the range for Fortran

1https://github.com/LLNL/dataracebench/wiki/Tool-Evaluation-Dashboard
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Tool Languages Version Compiler Flag(s)/Environment var

Archer release 60 Clang/LLVM 6.0 export TSAN OPTIONS=”ignore noninstrumented modules=1”;
-larcher -fopenmp

Intel Inspector

C/C++

2020(build
603904)

Intel Compiler 19.1.0.166 -collect ti3 -knob scope=extreme -knob stack-depth=16 -knob
use-maximum-resources=true -fopenmp

ROMP 20ac93c GCC 7.4 -g -std=c++11 -fopenmp -lomp
ThreadSanitizer 10.0 Clang/LLVM 10.0 export TSAN OPTIONS=”ignore noninstrumented modules=1”;

-fopenmp -fsanitize=thread

Archer release 60 Clang/LLVM 6.0/gfortran
10.1.0

-fopenmp -fsanitize=thread -lgfortran; -larcher (cross-compiled)

Intel Inspector

Fortran

2020(build
603904)

Intel Compiler 19.1.0.166 -free -qopenmp -qopenmp-offload=host -Tf

ROMP 20ac93c gfortran 7.4 -fopenmp -lomp -ffree-line-length-none
ThreadSanitizer 10.0 Clang/LLVM 10.0.1/gfor-

tran 10.1.0
-ffree-line-length-none -fopenmp -c -fsanitize=thread -lgfortran

TABLE III: Tools Information: version, compiler and flags used.

Tool Languages TP FP TN FN Recall Specificity Precision Accuracy TSR Adjusted F1

Archer

C/C++

63 1 80 17 0.7875 0.9877 0.9844 0.8882 0.9360 0.8190
Intel Inspector 71 40 45 8 0.8987 0.5294 0.6396 0.7073 0.9535 0.7126
ROMP 59 11 73 18 0.7590 0.8876 0.8630 0.8256 1.0000 0.8077
ThreadSanitizer 64 1 84 15 0.8101 0.9882 0.9846 0.9024 0.9545 0.8375
Archer

Fortran

53 0 63 16 0.8154 1.0000 1.0000 0.9063 0.7711 0.6927
Intel Inspector 63 9 65 16 0.7975 0.8784 0.8750 0.8366 0.9217 0.7691
ROMP 62 12 61 18 0.7750 0.8356 0.8378 0.8039 0.9217 0.7465
ThreadSanitizer 52 0 65 13 0.8000 1.0000 1.0000 0.9000 0.7831 0.6961

TABLE IV: Results of Individual Data Race Detection Tools. There are 172 C/C++ test programs and 166 Fortran test

programs. 83 C/C++ and 84 Fortran test cases have data race, 89 C/C++, and 82 Fortran test cases do not have data race.

is [0.8039,0.9063]. The accuracy range of C/C++ is sig-

nificantly worse than a previously reported accuracy range

of [0.8500,0.9500] generated by DRB v1.2.0 [21]. For the

adjusted F-1 scores, the range is [0.7126, 0.8375] for C/C++

and [0.6927, 0.7691] for Fortran. The range of C/C++ is also

worse compared to the earlier range [0.7860, 0.8510] reported

by DRB v1.2.0. These range numbers indicate that the new

version is indeed more difficult for tools to process.

There were some test programs, listed in Table V for which

all the four tools failed to either compile/run successfully or

detect the data race rightly. We have already reported in [20]

that most of the tools cannot recognize simd directive-based

data races correctly. Besides, the mutexinoutset is an

OpenMP 5.0 feature addition employed to enforce mutually

exclusive execution with dependencies. There is no data race

in DRB135-taskdep-mutexinoutset-orig-no.c as

a memory location is never accessed concurrently. But

two tools reported a false positive. Similarly, in an

accelerator-based kernel, the distribute directive in

DRB160-nobarrier-orig-gpu-yes.c does not have

an implicit barrier, but all tools missed to report the data race

correctly.

Also, none of the tools could identify the

incorrect use of the mergeable clause in

DRB129-mergeable-taskwait-orig-yes.f95
and reported FN. Primarily Archer encountered CSF for all

the accelerator-based kernels in Fortran. One reason for this

behavior is that the compiler’s version used in these tools does

not support GPU offloading in Fortran. It is interesting to see

none of the tools could run taskwait with Dependences

based test programs either in C or Fortran and errored out

with CSF. Again it is an OpenMP 5.0 feature.

C. Similarity Analysis

We experimented with our similarity analysis based on the

Cosine Distance, using the feature vector defined in Sec. II-D.

We define the extent of the likeness by its degree value.

Table VI is the reference table for our similarity analysis.

On investigating, we observed that there are 593 unique

loops among the test programs. We calculated the similarity

indices by computing the pair-wise distance between loops and

compiled them in the table VI.

We have 351,649 (593*593) cosine values. Out of which,

593 pairs are self-to-self distance comparison. We have ig-

nored such scenarios. We used 0.87 as a threshold and inves-

tigated the test pairs to check if there are any similar test cases.

For example, DRB042, a program from PolyBench, has 408

loops, which are identical to each other. After investigation,

we reduced the 408 redundant loops to 2 unique loops. We

investigated another similar test pair, DRB001, and DRB002.

They are identical in clause, directive, and the tool test results

except for the input array types (fixed size vs. varying size).

That means they are different by design. But our similarity

analysis methodology could not detect this and reported a false

positive (false similar). Similarly, DRB011 and DRB016 are

reported identical in directives and clauses. But the update

statement and the loop body were found to be different. Our

similarity analysis methodology currently does not encode

the loop bodies, and hence, generated another false positive.

Another similar pair discovered is DRB006 and DRB008.
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Archer Intel Romp Tsan
ID Name R Race Type Race Type Race Type Race Type

24 DRB024-simdtruedep-orig-yes.c Y 0 FN 0 FN 0 FN 0 FN
135 DRB135-taskdep-mutexinoutset-orig-no.c N CSF CSF 0-1 FP 2-4 FP
160 DRB160-nobarrier-orig-gpu-yes.c Y 0 FN 0 FN 0 FN 0 FN
73 DRB073-doall2-orig-yes.f95 Y 0 FN 0 FN 0 FN 0 FN
95 DRB095-doall2-taskloop-orig-yes.f95 Y CSF 0 FN 0 FN 0 FN

115 DRB115-forsimd-orig-yes.f95 Y 0 FN 0 FN 0 FN 0 FN
129 DRB129-mergeable-taskwait-orig-yes.f95 Y 0 FN 0 FN 0 FN 0 FN
138 DRB138-simdsafelen-orig-yes.f95 Y 0 FN 0 FN 0 FN 0 FN
144 DRB144-critical-missingreduction-orig-gpu-yes.f95 Y CSF 0 FN 0 FN CSF
148 DRB148-critical1-orig-gpu-yes.f95 Y CSF 0 FN 0 FN CSF
150 DRB150-missinglock1-orig-gpu-yes.f95 Y CSF 0 FN 0 FN CSF
160 DRB160-nobarrier-orig-gpu-yes.f95 Y CSF 0 FN 0 FN CSF
165 DRB165-taskdep4-orig-omp50-yes.f95 Y CSF CSF CSF CSF

TABLE V: Selected problematic benchmark programs causing tools to misreport the data race or have compile-time failures.

Cosine Distance Degree Similarity Index Pair Number

[0.87-1] 0◦-30◦ Identical 159,345
[0.5-0.87) 30◦-60◦ Moderately Identical 111,316
[-1-0.5) 60◦-180◦ Distinct 80,988

Total 351,649

TABLE VI: Cosine distance, similarity degree and test pairs.

Though they are alike in all the aspects, an index array has only

one element with different values in the two source files. By

design, these two are varying test programs, but our analysis

does not check the value difference in input arrays. So, it

reported a false positive.

Based on the experimental results, our similarity analysis

methodology can find some identical patterns. But it has

certain limitations. It does not encode information about a

loop’s body, input data types, and values. Such limitations

present an avenue for us to extend our current work to have

an enhanced feature vector in the future.

IV. RELATED WORK

There are plenty of OpenMP system’s performance evalua-

tion benchmarks available, such as NPB [23], SPEComp [1],

and OmpSCR [10]. At the same time, research for data

race detection in parallel benchmark has also extended for

the Java language. JBench [11] is one of the popular JAVA

data race benchmarks with 48 JAVA test cases and three

data race tools support. However, no benchmark is specially

designed for extensive OpenMP programs’ data race detection.

DataRaceBench v1.2.0 contains 116 test cases intended for

OpenMP data race detection with dynamic data race tools

support. In this paper, we included more test cases, extend

language support for Fortran, and support customizable partial

tests.

Statistical Similarity of Binaries [8] introduced a new

analytical approach to detect and analyze the similarity of

procedure in the stripped binaries. It uses the concept that

compares the resemblance of code by their compositions. By

using a control flow graph representation of a procedure, the

authors have divided the code into smaller fragments that are

small enough as a strand. When there are two sets of strands,

they use the proportion of matched value between the query

state and the target state as a statistical metric, VCP, signifying

the similitude ratio for the semantics similarity. The Tracelet-

Based Code Search in Executables [9] introduced a new static

method to find similar functions in the code-base. The author

divided the function into tracelets, which is a short, continuous,

partial trace of execution. For the two sets of tracelets, they use

the rewrite method to modify one tracelet to another tracelet

and keep the number of rewrite operations as edit distance.

Finally, they calculate the tracelet match score by aligning

tracelet with LCS variation (edit distance). These two methods

analyze the binary code similarity by a similar approach.

V. CONCLUSION

In this paper, we have presented our latest efforts to extend

DataRaceBench to have more comprehensive and up-to-date

tests. We have added 56 new C/C++ tests and 166 Fortran

tests, covering new GPU and OpenMP 5.0 features, as well

as new patterns extracted from literature and other bench-

marks. We re-evaluated several tools using the new version

of DataRaceBench (v1.3.0) and found that it exposes more

limitations of the tools. We also explored a simple similarity

analysis methodology to reduce the number of redundant code

patterns in the benchmark suite.

In the future, we will enhance our similarity analysis

methodology to encode more information about loops and

data, such as control-flow and data-flow information. We will

add more static data race detection tools [6] into our experi-

ments and expand the feature vector to include the results of

new tools also. Since the current kernel extraction process is

manual, we will explore developing source-to-source tools to

automatically extract kernels. Depending on the interests of the

community, we can also add OpenACC and CUDA versions

of tests.
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APPENDIX

A. ARTIFACT DESCRIPTION

A.1 Overview
A.1.1 How software can be obtained (if available)?
DataRaceBench v1.3.2 can be found at Github,

https://github.com/LLNL/dataracebench.

Alternatively, it can be pulled as a Docker Image directly

from the Docker Hub,

https://hub.docker.com/repository/docker/yshixyz/dataracebench

A.1.2 Hardware dependencies.
The computation node we used is from the Lassen IBM

POWER9 nodes with NVIDIA Volta GPUs as described at

https://hpc.llnl.gov/hardware/platforms/lassen . The nodes are

machines running Linux operating systems. To obtain results

of Intel Inspector, we also ran the DataRanceBench on the

Carina machine at the University in North Carolina. This

machine has 2 Intel(R) Xeon(R) Gold 6230N CPUs and an

NVIDIA Tesla V100 GPU.

Any similar hardware supporting execution of OpenMP

programs should be supported. For example, the DRB can be

run on AWS Cloud-based GPU instances.

A.1.3 Software dependencies.
As a benchmark suite, DataRaceBench is provided as a

Dockerized Service. The images contain Archer, ROMP, and

ThreadSanitizer tools (Intel Inspector need a valid license,

hence its image is not provided) and DataRaceBench. One may

need to update DataRaceBench (DRB) to the latest Github

version and mount it into the docker container. The image

details are as follows:

• ThreadSanitizer, version 10.0, and compiler support for

Clang/LLVM 10.0

• Archer, release version release 60, and compiler support

for Clang/LLVM 6.0

• ROMP, version 20ac93c, and compiler support for GC-

C/gfortran 7.4.0.

We have used Intel Inspector, version 2020(build 603904), and

compiler support for Intel Compiler 19.1.0.166 and the latest

v1.3.2 version of DRB 2.

A.1.4 Datasets.
All programs in DataRaceBench have built-in data sets. No

additional input files are needed. A configuration file is used

to specify different sizes of arrays or to run selected programs

only.

A.2 Installation
Follow the below steps to use the DataRaceBench:

1) ThreadSanitizer: sudo docker pull yshixyz/-

dataracebench:Tsan

2) Archer: sudo docker pull yshixyz/dataracebench:archer

3) ROMP: sudo docker pull yshixyz/dataracebench:romp

2https://github.com/LLNL/dataracebench

4) Intel Inspector: A valid license is required to install and

use Intel Inspector.

After downloading the docker image, a user needs to create

containers for all the four tools.

1) Archer: docker run -it –name drb archer yshixyz/-

dataracebench:archer

2) ThreadSanitizer: sudo docker run -it –name drb tsan

yshixyz/dataracebench:Tsan

3) ROMP: sudo docker run -it –name drb romp yshixyz/-

dataracebench:romp

4) Intel Inspector: Assume user have built their own Intel

image - sudo docker run -it –name drb intel bash

DRB is automated with the provided scripts which are

covered in the next section.

A.3 Evaluation Workflow
Once the above setup is completed, one can start and enter the

respective docker container using one of the below commands:

• docker start drb archer; sudo docker exec -it -u root

drb archer bash

• docker restart drb Tsan; sudo docker exec -it -u root

drb tsan bash

• docker stop drb romp; sudo docker exec -it -u root

drb romp bash

• docker rm drb intel; sudo docker exec -it -u root drb intel

bash

DataRaceBench’s execution script, check-data-races.sh, has

builtin support for all the four tools. Once we enter a container,

we need to set the environment for ROMP and Intel Inspector.

To use ROMP, we need to run the following commands to set

the context:

Listing 8: Environment setup - ROMP

1 source /home/drb/modules/init/bash
2 module use /home/drb/spack/Modules/modules/linux-

ubuntu18.04-haswell
3 module load gcc-7.4.0-gcc-7.5.0-moe6s7c
4 module load llvm-openmp-romp-mod-gcc-7.4.0-cs7qzdu
5 module load glog-0.3.5-gcc-7.4.0-gqqsqah
6 module load dyninst-10.1.2-gcc-7.4.0-ohvswfl
7 export DYNINSTAPI_RT_LIB=/home/drb/spack/Modules/

packages/linux-ubuntu18.04-haswell/gcc-7.4.0/
dyninst-10.1.2-ohvswflc5hmntqwldkswrmwexnb56hzm/
lib/libdyninstAPI_RT.so

8 export ROMP_PATH=/home/drb/spack/Modules/packages/
linux-ubuntu18.04-haswell/gcc-7.4.0/romp-master-
i4tglb74pfvppyxbq42iljsrcxmexnrv/lib/libromp.so

9 export PATH=/home/drb/spack/Modules/packages/linux-
ubuntu18.04-haswell/gcc-7.4.0/romp-master-
i4tglb74pfvppyxbq42iljsrcxmexnrv/bin:$PATH

For Intel Inspector, we need to run the following code to set

the environment:

Listing 9: Environment setup - Intel Inspector

1 source /opt/intel/parallel_studio_xe_2020.0.088/bin/
psxevars.sh

2 export PATH=/opt/intel/bin:$PATH

Double-check the file location and the added path for the

correct environment variables setup. To run the DRB, use:
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./check-data-race.sh --toolname language
(./check-data-race.sh --romp fortran)

Use below to see all the possible options: #show
more helpful information for this script
./check-data-races.sh --help

We can even run partial test programs using

--customize flag. One should enter the test programs to

run in the list.def and tools to test in the tool.def
file. Rest all the steps remains the same and can be referred

to from the above --help option.

A.4 Evaluation and Results
Running check-data-races.sh generates csv files stored in a

sub-directory, named results, containing multiple lines of

information. Each line indicates results of one or several

experiments of a given tool under a certain configuration, with

fields for:

• The name of the evaluated tool.

• The filename of the microbenchmark.

• True or false (indicating whether the microbenchmark is

known to have a data race).

• The number of threads being used for execution.

• Varying length array size (reports N/A if the microbench-

mark has no variable length array(s)).

• How many data races the tool reports for this experiment.

• The elapsed time reported in seconds in the experiment.
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